Position of Static Cylinder Effect on Base Flows
(Much of the conclusions drawn in this paper are based on actual experimental data obtained through the use of a portable data acquisition system.)

Asadullah, M. | Khan, S.A. | Asrar, W. | Sulaeman, E.
Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur, Gombak 12345, Malaysia

Abstract

This paper presents the effect of the cylinder as a passive controller on the recirculation zone behind high-speed objects. The low-pressure recirculation zone was measured for base and wall region with a portable data acquisition system using sixteen solo sensors between reattachment and separation points at angles \(^\circ\), \(^30^\circ\), \(^60^\circ\), \(^90^\circ\). Pressure measurements were done by the transducer of National Instruments 9205 Screw Term and Data Acquisition cDAQ-1978. The measurement was done using DAQ connected to 16 solo sensors of \(-\) psi range. In a second it is capable of scanning 250 samples, followed by computing the overall average and store it on the disk. The NI LabVIEW Academic Software using DAQ through pressure sensors acquires data from all the sixteen channels and displays it on the computer screen. The experiments were carried out for overexpanded and perfectly expanded supersonic jets at Mach 2 through the C-D nozzle for area ratio . It is found that the control has marginally influenced the base and wall flow field when the control was placed at different positions along the imaginary line from separation to reattachment angled at \(^30^\circ\) to the horizontal base and the flow field in the base area along the separation line is mostly independent of its locations except near the exit of the enlarged duct where the flow field is mostly influenced by the back pressure. The control seems to be strongly effective when flow expanded is ideal. © 2020, Springer Nature Singapore Pte Ltd.
References (28)

1. Bushnell, D.M., Moore, K.J.
 Drag reduction in nature
 http://arjournals.annualreviews.org/loi/fluid
 doi: 10.1146/annurev.fl.23.010191.000433

2. Gad-El-hak, M.
 Cambridge University Press

3. Viswanath, P.R.
 Flow management techniques for base and afterbody drag reduction
 doi: 10.1016/0376-0421(95)00003-8

 Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge
 using a new passive device
 doi: 10.1017/S0022112006001364

5. Saile, D., Gülhan, A., Henckels, A., Glatzer, C., Statnikov, V., Meinke, M.
 Investigations on the turbulent wake of a generic space launcher geometry in the hypersonic flow regime
 , PP

6. Khan, S., Bashir, M., Asadullah, M.
 J Sci Res Dev

7. Uruba, V., Knob, M.
 Dynamics of controlled boundary layer separation

8. Jahanmiri, M.
9. Ho, C.-M., Gutmark, E.
 Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet
doi: 10.1017/S0022112087001587
 View at Publisher

10. Bao, Y., Tao, J.
 The passive control of wake flow behind a circular cylinder by parallel dual plates
 View at Publisher

11. Pan, S.-C., Cai, J.-S.
 Investigation of vortical flow over bluff bodies with base cavities
doi: 10.1007/s10409-012-0143-2
 View at Publisher

 Experiments on flow past rough circular cylinders at large Reynolds numbers
doi: 10.1016/0167-6105(93)90030-R
 View at Publisher

13. Lim, H.-C., Lee, S.-J.
 Flow control of circular cylinders with longitudinal grooved surfaces
doi: 10.2514/2.1535
 View at Publisher

14. Berrueta, T., Rathakrishnan, E.
 Control of Subsonic and Sonic Jets with Limiting Tabs
doi: 10.1515/tjj-2016-0037
 View at Publisher

15. Williams, D., Amato, C.
Springer, pp

16. Khan, S.A., Rathakrishnan, E.
 Control of suddenly expanded flow
doi: 10.1108/17488840610675573
 View at Publisher
Fiedler, H.E., Fernholz, H.-H.
On management and control of turbulent shear flows
doi: 10.1016/0376-0421(90)90002-2
View at Publisher

Tanner, M.
Reduction of base drag
doi: 10.1016/0376-0421(75)90003-2
View at Publisher

Gutmark, E.J., Grinstein, F.F.
Flow control with noncircular jets
doi: 10.1146/annurev.fluid.31.1.239
View at Publisher

Mariotti, A., Buresti, G., Salvetti, M.V.
Connection between base drag, separating boundary layer characteristics and wake mean recirculation length of an axisymmetric blunt-based body
http://www.elsevier.com/inca/publications/store/6/2/2/8/7/7/index.htm
doi: 10.1016/j.jfluidstructs.2015.02.012
View at Publisher

Zdravkovich, M.
Flow around circular cylinders; vol. I fundamentals

Mittal, S., Raghuvanshi, A.
Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers
doi: 10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M
View at Publisher

Drazin, P.G., Reid, W.H.
Hydrodynamic stability.
ISBN: 0521227984; 978-052122798-8

Dou, H.-S.
Mechanism of flow instability and transition to turbulence
View at Publisher
doi: 10.1007/978-3-540-74384-2_8

doi: 10.1016/S0889-9746(02)00149-4

doi: 10.1063/1.4972549

Asadullah, M.; Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur, Gombak, Malaysia; email: shiblibhai@gmail.com
© Copyright 2020 Elsevier B.V, All rights reserved.