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ABSTRACT Children with Autism Spectrum Disorder are identified as a group of people who has
difficulties in socio-emotional interaction. Most of them lack the proper context in producing social response
through facial expression and speech. Since emotion is the key for effective social interaction, it is justifiably
vital for them to comprehend the correct emotion expressions and recognitions. Emotion is a type of affective
states and can be detected through physical reaction and physiological signals. In general, recognition of
affective states from physical reaction such as facial expression and speech for autistic children is often
unpredictable. Hence, an alternative method of identifying the affective states through physiological signals
is proposed. Though considered non-invasive, most of the current recognition methods require sensors to be
patched on to the skin body to measure the signals. This would most likely cause discomfort to the children
and mask their “true’ affective states. The study proposed the use of thermal imaging modality as a passive
medium to analyze the physiological signals associated with the affective states nonobtrusively. The study
hypothesized that, the impact of cutaneous temperature changes due to the pulsating blood flow in the blood
vessels at the frontal face area measured from the modality could have a direct impact to the different affective
states of autistic children. A structured experimental setup was designed to measure thermal imaging data
generated from different affective state expressions induced using different sets of audio-video stimuli.
A wavelet-based technique for pattern detection in time series was deployed to spot the changes measured
from the region of interest. In the study, the affective state model for typical developing children aged between
5 and 9 years old was used as the baseline to evaluate the performance of the affective state classifier for
autistic children. The results from the classifier showed the efficacy of the technique and accorded good
performance of classification accuracy at 88% in identifying the affective states of autistic children. The
results were momentous in distinguishing basic affective states and the information could provide a more
effective response towards improving social-emotion interaction amongst the autistic children.

INDEX TERMS Autism, affective states, facial skin temperatures, thermoregulation, thermal images,
wavelet.

I. INTRODUCTION

For decades, numbers of research have been conducted in the
field of affective state recognition, using numerous modalities
and exploiting various features from the signal generated
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by the Autonomous Nervous System (ANS). ANS together
with hypothalamus, regulates the blood pressure, breath-
ing, pulse and arousal in response to different emotional
features. Seeing the big potentials of affective state recog-
nition system, a systematic review of the literature was per-
formed in the study to identify research gaps in addressing
the issue of recognition of affective states using thermal
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images particularly. In general, the modalities available for
affective state detection can be divided into three categories
that are behavioral response, physical reaction and physio-
logical signal. The behavioral response is usually measured
through the engagement or body language towards the activ-
ities whilst physical reaction is presented through facial and
speech expressions respectively. To some extent, these two
modalities are questionably appropriate to be implemented
on the Autism Spectrum Disorder (ASD) children since they
have difficulties in expressing their “true” affective states
physically or behaviorally. Hence, the other perspective of
looking at the automatic response inside the body for the fea-
tures of different affective states was investigated. The chosen
modality for recognition of affective states via physiological
signals which are directly proportional to the response from
the body as the reaction of ANS activities was discussed.
The measurement via physiological signals is seemed to be
more natural and “honest” as it happens automatically and
unregulated in our body system. However, in all the mea-
surements of the physiological signals, the in-contact type of
sensors is necessary to be patched onto the skin body. As a
result, the person who wears the sensor would possibly be
aware about its presence and most likely influence his “true”
affective states response.

Although, there are many ways in analyzing the correla-
tion between affective states and physiological signals in the
human body, the study focuses on the frontal facial skin tem-
perature. Itis due to the fact that the face is directly exposed to
social communication and interaction. Even though, the facial
expression is the most rampant means used to identify the
affective states [1], yet, these means could still lead to false
positive response in recognizing the true affective states due
to the fact that facial expression can be faked. On the same
note, the use of thermal imaging has been reported in detect-
ing the changes in temperature for masked fearful faces as
well as masked happy faces [2].

The target of the study was the individual who cannot
reveal and express their affective states verbally or might
give inappropriate facial response when induced like the ASD
children. Conventional method requires the therapists or care-
givers to recognize the affective states of the autistic children
through facial expression. The ability of thermal imaging
to measure the affective states even in a “masked” emo-
tion usually expressed in facial expression form for typical
developing (TD) children motivates the study to be extended
to investigate the affective states of autistic children. The
accurate identification of affective state would be able to
help enhance the performance of current rehabilitation and
training regimens.

In many cases, the change of affective states in an indi-
vidual was recognized as either positive or negative emo-
tions through the level of engagements or from a group of
emotions displayed. Engagement is epitomized as behavioral
feedback meanwhile emotions normally refer to the speech or
facial expression. However, in the case of the children with
ASD, their speech and facial expression are unpredictable
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to gauge their emotions. In fact, Gross [3] has identified the
impairments in interpreting their facial expressions and it was
supported by Sato [4] that found that emotion expressions
are less noticeable in children with ASD. These gaps may
obviously be related to social interaction deficits. A recent
study by Poljac [5] also emphasized on the differences in
interpretation of facial expressions and its associated affective
states as the relation depended on the extent of autism traits
at the individual level.

A. AFFECTIVE STATES RECOGNITION FROM

THERMAL IMAGES

Thermal imaging is a passive technique used to create a heat
map of objects appearing in a sight without external lighting
source. It has been successfully explored and employed in the
medical area in which it introduces the use of non-invasive
and non-contact physiological sensors to the measurement
process. It is a highly adaptable and delicate method to con-
vert infrared light into temperature information, consenting
wireless monitoring of the subject and detecting complex
regional pain syndrome, inflammatory diseases, Raynaud’s
phenomenon [6] and cancer [7]. According to [8], pulsating
blood flow produces the strongest variation on the temper-
ature signal. Nardelli [9] found that the change in affective
states causes variation in the skin temperature. Since the
human face composition consists of thermal imprints that
reflect the area with different concentration of blood vessels
and hence it can be easily spotted using thermal camera.
These thermal patterns particularly on facial skin have been
used for analysis of correlation between physiological sig-
nals and affective states. Correlation between the changes in
facial skin temperature and affective states was significantly
proven by [10] where the maps of bodily sensation temper-
ature changes were studied in response to the visual stimuli.
Supporting the research, Kosonogov et al. have proven that
thermal imaging provides a reliable tool to detect the changes
and hence enables one to differentiate between affective
states [11]. Although, they have evaluated the efficiency of
thermal imaging in affective states recognition, there were
missing gaps in the research. None of the research has ever
reported the application of the method to recognize the affec-
tive states of ASD children. It can be observed that many
studies so far focused on TD individuals.

As to conclude, thermal imaging binds the body’s naturally
emitted thermal irradiation to allow temperature readings
due to the varying pulsation of the blood flow. This method
enables cutaneous temperature recordings to be measured
noninvasively, and unobtrusively.

B. THERMAL IMAGE ANALYSIS

The use of thermal imaging for affective states analysis
has been reported using various methods and algorithms
([12]-[18]). Basu, Routray and Deb [12] have explained
the features extracted from histogram analysis and fed to a
multi-class support vector machine for classification of the
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emotions whilst Bijalwan, Balodhi and Gusain [13] applied
eigenface features in Principal Component Analysis and dis-
tance classifier. Similar goes to [14] who has studied on
the histogram analysis at the specific region of interest on
face to detect a deception emotion. A comparative analy-
sis between dermal and thermal was also conducted and
proven the capabilities of thermal images to investigate the
emotional responses by [11]. Apart from this recent studies,
a review of the thermal imaging applications were sum-
marized by [15] to identify the capabilities and successful
works done on the similar area of affective states detec-
tion using thermal images. Nevertheless, a standard golden
procedure for thermal imaging processing has not been
reported.

In the field of machine vision, feature extraction is a fun-
damental topic involving delicate image processing proce-
dures, prior to the extraction of the important information
from the input image. The step is regarded as a special
form of dimensionality reduction which goal is to reduce
computational cost when dealing with real-time applications.
The common methods available in feature-based analysis
of image processing are statistical method [12] to extract
the mean, standard deviation, maximum and minimum val-
ues, Grey Level Co-Occurrence Method (GLCM) [19], [20],
geometrical method to extract Voronoi tessellation feature
and fractal information [21], and signal processing method
like Wavelet transform [22], Gabor filters, and curvelets to
name a fews. All of these methods manipulating the local
variation of images either based on the greyscale intensity
or conversion of temperature values in thermal images. Sta-
tistical parameters are used to characterize the content of an
image by looking at its texture. It can be further grouped into
first-order (one pixel), second-order (two pixels) and higher
order (three and more pixels). The basic difference is the first
order statistics consider a property of an individual pixel and
neglecting the neighborhood pixels whereas, a GLCM as an
example of second-order statistic generates the information
with regards to the neighboring pixel. On the other hand,
geometrical analysis usually is used in pattern recognition
and it has been extensively discussed in biological and med-
ical applications in a book by [23]. In the meantime, signal
processing method is the continuing works of texture analysis
from an image into time series data and its counterparts to
the first two methods; first-order and second-order statistical
analyzes that only focus on the texture of an image. Signal
processing can be applied if there are a number of sequences
in image of a video file.

Generally, features extraction from thermal images can
be divided into two domains namely: imaging features and
temperature features [24]. Imaging features are defined as
features processed directly on the image intensity values,
meanwhile temperature features are the conversion values
from intensity to temperature readings from each pixel
in the thermal image. Yasunari [25] reported the use of
2-dimensional discrete cosine transformation (2D-DCT) to
transform the greyscale values as imaging feature of the facial
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image into frequency components, and applied the extracted
features in the expression recognition systems. In support of
the work was Basu, Routray and Deb [12], who have applied
the histogram features to classify the affective states. This
feature falls under imaging features in which the greyscale
intensity values were taken into measurement. The features
were used in the classification of four affective states namely
the anger, fear, happy and sad with the accuracy of 81.95%.
Conversely, for the temperature features, [26] has exploited
the variances in the thermal intensity values recorded at ther-
mally significant locations on human faces as the features
to distinguish pretended and evoked affective expressions.
In the similar context, [11] has extracted the time, frequency
and time-frequency features derived from temperature read-
ings in thermal images to classify the natural responses of
subject- levels of arousal and valence induced by series of pic-
tures from the International Affective Picture System (IAPS)
and others. [27] examined the discriminative features based
on the temperature distribution of the periorbital region
for detecting deceptions. According to their work, a total
of 492 responses were gathered from twenty-five subjects
consisting of 249 lies and 243 truth responses. Throughout
the data collections stage, the right and left sides of perior-
bital region were continuously tracked, and the images were
captured at the rate of 25 frames per second. The developed
classifier model attempted to classify the truths or the lies
by using two approaches that were between-person approach
and within-person approach. In another interesting work by
[24], they proposed a method for recognizing affective states
based on the thermal images. They used facial temperature
data from the thermal images to classify different emotions
(happy, fear and disgust). The sources of the thermal images
were taken from the Natural Visible and Infrared facial
Expression (USTC-NVIE) database. In each identified ROI,
there were six features extracted namely the mean, mean of
absolute values, mean of positive and negative values indi-
vidually, temperature difference histogram features (TDHFs)
and variance, sampled at rate of two frames per second. In the
similar study of deception detection, [28] has also applied
temperature features on segmented face and overall areas
of the thermal images. The temperature features consist of
mean, individual minimum and maximum temperature, stan-
dard deviation and range of temperature for facial and overall
areas correspondingly. In most of the experiments, they have
done the analysis based on the first order statistical features
such as computation of mean, standard deviation, variance,
minimum and maximum and variance in either intensity or
heat signature of pixels within a ROI [15]. However, there
was also a study done on the second-order statistical features
called as Gray Level Co-Occurrence Matrix (GLCM). [29]
has started to choose GLCM for region descriptors computa-
tion of the thermal images to distinguish the expressions of
surprise, happiness and anger. GLCM was first introduced by
[30] and it is amongst the widely used texture feature extrac-
tion method in computer vision field. The GLCM character-
izes the second-order statistic of an image by computing how
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often pairs of pixels with specific values and in a specified
spatial relationship occur in an image.

In our preliminary study, [19] and [20], only the GLCM has
been successfully applied in the affective states recognition
of the adults with the accuracy of 86%. Thus, a combination
of statistical method and signal processing method was pro-
posed in this study where the texture of a single image was
first analyzed. The mean intensity, area of ROI and GLCM
parameters were later chosen as thermal features. Among the
extracted thermal features, the mean intensity values were
further scrutinized into using signal processing method. The
mean features were translated into continuous signal and
Wavelet Transform (WT) was applied.

WT was introduced as the solution to overcome the lim-
itation of Fourier Transform (FT) and Short-time Fourier
Transform (STFT) since FT can only analyze the frequency
components of the signal but without information on the
time-domain of the particular frequency rises meanwhile
STFT applies the sliding window and is able to give data
in both time and frequency domains but yet the length of
the window limits the resolution of the frequency. This is
due to the huge window measure in STFT recovers the
frequency resolution and yet supposition of stationary data
inside the window might be undermined while picking little
window size may prompt poor frequency resolution. Thus,
WT was preferred in order to locate the frequency of interest
in the time domain. Theoretically, WT are divided into three
types namely, Discrete Wavelet Transform (DWT), Wavelet
Packet Transform (WPT) and Continuous Wavelet Transform
(CWT). The DWT can be efficiently realized by decomposing
the signal into approximation (low frequency) and detail
(high frequency) coefficients and it operates at the integer
having the power of two. On the other hand, WPT, after the
first level, both the detail and approximation are decomposed
into further level. Meanwhile, for the CWT, it can operate at
any scale. The later type is more competent and reliable due
to its capabilities to keep all the information without the need
of down-sampling. The CWT results in Continuous Wavelet
Coefficients (CWC), which illustrates how well a wavelet
function correlates with a specific signal. If the signal has
a major frequency component corresponding to a particular
scale, then the wavelet at this scale is similar to the signal at
the location where this frequency component occurs, regard-
less of its amplitudes and phases.

In this study, CWT was used to locate the affective states
event in the time series data. The outcome of the convolution
between signals was established as the basis for comparing
the nominated mother wavelet functions. Selection of the
most similar mother wavelet function has been a challenge
for the application of wavelet transform in signal processing,
as different mother wavelet applied on to the same signal
may produce different results. The mother wavelet function
is the main base of wavelet transforms that would authorize
similarities of correlated coefficients across multiple signals.
The more alike the mother wavelet function is to the wavelet
coefficients across signals, the more accurate the signal of
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interest can be secluded and recognized; hence, the selec-
tion of a mother wavelet function is of supreme implication.
Heretofore, there is no standard or general method to select a
mother wavelet. A study reported in [31] has determined the
most suitable and similar wavelet function to the biosignals:
forearm electromyographic (EMG), electroencephalographic
(EEG), and vaginal pulse amplitude (VPA). The results
showed that a periodic behavior can be extracted from those
three biological signals using Morlet function thus opted in
this study. Furthermore, a rational reason to use the Morlet
wavelet function was due to the thermoregulation phenomena
in human’s body.

During the expression of specific emotions or affective
states, a change in facial temperature would appear due to
the thermoregulation mechanism in the body. Thermoregula-
tion mechanism is a special, natural, body control system to
maintain the temperature of a body at a relatively constant
hypothalamic setpoint [32]. Since the variation of the tran-
sient change of hypothalamic setpoint is of non-stationary
nature, the signal is suitable for wavelet-based analysis. Of
the same note, early study has been conducted to find the
correlation between skin blood flow and wavelet by [33] and
the results were able to differentiate the control mechanisms
of blood flow in response to a variety of stimuli. The method
used has been validated by comparison with laser Doppler
imaginary effect amongst 20 healthy subjects whereby, cuta-
neous blood flow values, simultaneously computed by ther-
mal IR imagery and measured by laser Doppler imaging.
The results depicted a linear correlation (R = 0.85, Pearson
Product Moment Correlation). Therefore, it is possible to
transform raw thermal image series in cutaneous blood flow
image series. This method has been applied in psychophys-
iology study of emotion assessment [15] and deception
detection [34].

The mother wavelet should be carefully selected to better
estimate and capture the transient in the de-noised thermal
signals. To the extent, the Morlet Wavelet Function that
was used as a mother wavelet has the basic characteristics
of individual body thermoregulation for both transient and
steady-state shape of the signals. It is used to detect any
abrupt changes or transient event in the temperature sig-
nals to be correlated with the salient change in the affec-
tive states. The outcome of the correlation between signal
and wavelet basis function has been established as the basis
for comparing selected mother wavelet functions. In this
research study, Morlet wavelet was chosen as the mother
wavelet.

Il. RESEARCH DESIGN

A well-planned experimental setup and systematic flow of
experiment was designed for the collection of thermal imag-
ing data from TD children (control group) and children with
ASD. According to [35], it was possible to infer subjects’
affective states from information collected from different
types of resources, such as audio, video, self-report tools and
interaction analysis.
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A. SUBJECT SELECTION

The cross-sectional approach was adopted where two groups
of subjects were recruited namely the TD children and the
ASD children. The range of age of the male and female
population was set between 5 to 9 years old from both groups.
However, 86% of the selected subjects from ASD children
were male aged between 5 to 6 years. A random sampling
method was applied to select the subjects from TD children
group. Meanwhile a purposive sampling method was used
to select the ASD children from the category of advance
level based on behavioral analysis score which required the
subjects to be able to adequately follow the given instructions,
such as to sit down on the chair and face the screen for
stimulus. The required number of subjects recruited in the
experiment was calculated from a priori analyze in G*power
software where it is an open software used to calculate statis-
tical power and sample size. A reference value of mean and
standard deviation taken from Nicolini’s work [36], and the
outcomes with error probability at 0.20 and Power at 0.80 is
tabulated in Table 1.

TABLE 1. Parameter in G*Power analysis.

Term Descriptions

Analysis | A priori: Compute required sample
size

Tails(s) = One

Input a err prob = 0.20
Power(1- err prob) = 0.80
Sample size group 1 =23

Output Sampe size group 2 =23

Total Sample size = 46
Actual Power = 0.8058150

As can be seen in the Table 1, 23 subjects were required
as the minimum number from each group of TD and ASD
subjects accordingly. In the study, a total of 57 subjects
(34 TD Children and 23 ASD children) were recruited in
which ethical clearance (IREC465) was secured in prior.

B. STIMULI SELECTION

In order to elicit the specific affective states, three distinct
sets of audio-visual stimuli corresponding to happy, fear and
sad basic affective states were administered to the subject via
a monitor screen. Many research in the field of physiology
explicitly specializing in emotion and attention have adopted
still images from the standard database, the International
Affective Picture System (IAPS) in their studies. The images
from the IAPS database are systematically categorized and
rated to meet the standard set by the psychologists. How-
ever, from observation, the ASD children seemed to face
with difficulties in understanding and responding to the still
images from IAPS appropriately and it was supported by [37].
As a result, two sets of audio-visual based stimuli were
developed for TD and ASD children groups, respectively. The
audio-visual stimuli were composed of five set of IAPS still
images for each affective state to be induced from TD group.
Meanwhile, the stimuli used for ASD group were further
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personalized based on the feedback obtained from the care-
givers. The final forms of stimuli with proper scenario of situ-
ations and sounds were adopted in the study post consultation
with psychiatrist, therapist and special needs teachers. Both
sets of stimuli were composed of three standard segments
namely the baseline (T1) (Pre-segment), stimuli for induc-
tion (T2) (During-segment), and rest (T3) (Post-segment)
respectively. The T2 segment was designed to induce the
intended affective states and composed of either series of
IAPS still-images or dynamic images with respected sce-
nario. Whereas, the segments T1 and T3 were composed of a
black dot at the center of a white screen and full black screen
accordingly. The goal was to ascertain engage state and relax
state respectively. The timeframe of the stimuli spanned at
the intervals of one to five minutes. A quick break of two to
three minutes between the stimuli was given. In order to avoid
misreading or mixing of affective states in the data sequence,
the stimuli were arranged from positive to negative valence
as depicted in the Fig.1 for Circumplex Model (i.e.1-happy,
2-fear and 3-sad).

C. EXPERIMENTAL PROTOCOL

A proper data collection process during the experiment is
paramount to generate dataset with the highest accuracy and
consistency. In the experiment, a FLIR thermal camera model
T420 sitting on a pan-tilt system to track the face was used to
capture thermal facial images of the subjects. The camera was
set with emissivity value of 0.98 for temperature reading of
human skin. Throughout the data collection session, a set of
standard protocols was observed and described as follows:

1) The experiment was prepared in a controlled room with
temperature set to 24°C. The room was free from ambi-
ent noise and clear from foreign distraction. The subject
should be healthy and with the presence of therapist or
caregiver and researcher during data collection.

2) The subject was required to seat comfortably in front
of a monitor screen with the distance of 1.5m apart
between the subject and the thermal camera.

3) The subject was ensured to secure the forehead area
from any occlusion like hat or scarf. Glass made mate-
rial should also be cleared from the image frame, which
could represent opaque in thermal spectrum. Hence,
the subject with eye glass was excluded in the study.

4) The experiment was conducted by administering stim-
uli via a monitor screen and at the same time the sub-
ject’s frontal facial was recorded using thermal camera.

5) Atthe end of each session, the subject was requested to
fill-up the questionnaire related to the elicited affective
state and should rest for 2-3 minutes before the elic-
itation of the next affective state. This step was only
applicable to TD group of children as it was sure that
the children could render response appropriately. In the
case of ASD children, the experiment was executed
upon the subject readiness and the therapist would
assist in responding to the questionnaire based on his
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FIGURE 1. Russell’s Circumplex Model.

personal assessment of the subject. The process might
completed in the same day or continue in the following
day subjected to the child readiness and advice from the
therapist.

The experiment was conducted in a single trial for every
subject from both groups of children to avoid bias. How-
ever, for the ASD children, the subjects would have a few
prior sessions following similar experimental protocol but
using different set of stimuli. This was to ensure the chil-
dren to be familiar and comfortable with the new environ-
ment so he/she could place more focus in doing the actual
experiment.

Ill. THERMAL DATA ANALYSIS

In a Machine Learning, a proper selection of features is
important to avoid unnecessary complexity in the model and
it is known that the algorithms have the tendency to be
affected by noisy data. Noise should be reduced as much as
possible in order to improve the efficiency of the algorithm.
Thus, detail analyses were executed for every taken step to
produce decent thermal features with minimal noise. The
section expounds the equitable findings in the pre-processing
thermal images and feature extractions and selections.
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A. SEGMENTATION OF REGION OF INTEREST (ROI)

The selection of supraorbital and periorbital regions as the
ROIs in the study stemmed from the fact that the two ROIs
were found to be highly independent and significant in the
affective state model analysis [38]. A matching template
technique was implemented to automatically locate the ROIs
for a complete series of thermal images for a subject. Since
the process was done in an offline mode, every recorded video
was initially converted into raw frontal facial thermal images.
Then, template was taken from a manual cropped image
of periorbital region from the first image of each subject.
A threshold value of 150 was applied onto template to convert
to a binary image as shown in Fig.2.

FIGURE 2. Template in binary.

The matching process started from the top left corner of
the image and it computed the difference for each pixel in
the frame size (3 x 3) of template and the process continued
to shift over the entire image. The absolute differences were
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FIGURE 3. Output of ROI cropped images.

summed up and stored. The minimum of the summation
of absolute differences over entire process was selected as
the best matched image. Fig.3 displays results of cropped
image in frames over time. Supraorbital was automatically
cropped at the same time during the segmentation process of
periorbital.

B. THERMAL FEATURES

Strong correlated features were required to give better perfor-
mances in the accuracy of the affective states classifier. In this
study, three major steps were considered in order to confirm
good results of the developed classifier from the TD children
which were:

1) Time detection of the affective state change
2) Selection of the best thermal features
3) Selection of quality datasets

1) TIME DETECTION OF AFFECTIVE STATE CHANGE

A dedicated algorithm was designed to automatically locate
the event where the induced affective states transpired
within the measured signals. It was stemmed from the fact
that the continuous difference in content of the stimuli used
was causing the response to vary by time. As such, a CWT
technique was deployed to analyze the signals. CWT was
used to locate the affective states event in the time domain for
thermal image video data. The outcome of the convolution
between signals was established as the basis for compar-
ing the nominated mother wavelet functions. The ability to
locate the instantaneous event in the scalogram resulted in the
important information about the specific timing and duration
of the induced affective states within the signals. This helped
in the analysis of the signals as such the identified window
of the signals was further analyzed statistically to extract the
required features.

The occurrence of similar frequency pattern of non-
sinusoidal signal at specific time was most vigorous to
identify the affective states change reflected in the de-noise
thermal signals. The wavelet scalogram was used to iden-
tify signals with specific frequency components. It is a 3D
grey color representation of wavelet coefficients, where the
horizontal axis represents the time, #, the vertical represents
the scale at evenly distributed frequency, a and the z-axis
displays the color scale of square magnitude of the wavelet
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coefficients on an intensity graph. The scaling factor of
the mother wavelet was heuristically changed and tested to
supreme match with the time of occurrence. The Analytic
Wavelet Transform (AWT) was used in the LabVIEW as it is
a special case of the CWT with Morlet wavelet. The output of
the AWT is the CWT coefficients, which reflects the wavelet
energy spectrum and can be viewed by plotting its scalogram.
The scalogram defines the time-frequency behavior of the
signal and can be used to locate the events of affective states.
The scale value of AWT (i.e. @) set in the LabVIEW took the
form of 2™ where M ranges between 0 and 8. The squared
magnitude of CWT coefficient showed in the scalogram was
jointly representing the signal in terms of time and frequency
at a constant scale. Large scales corresponded to low frequen-
cies, and small scales corresponded to high frequencies.

2) SELECTION OF THE BEST THERMAL FEATURES

The selection of thermal features is crucial as it may affect
the performance and computational cost of the classifier.
A proper selection of best thermal features was then required.
Three signals sampled at 3 Hz namely de-noise temperature
signals, the setpoints values, and de-noise thermal signals
minus setpoints values were generated from mean intensi-
ties in the ROI. The statistical parameters such as mean, pu,
standard deviation o, median n and frequency of the highest
amplitude point in the signals were extracted to form the new
feature set totalling to 12 number of features (4 features x
3 signals) and added to the original features extracted from
the ROI thermal image that were blood vessels area, GLCM
contrast, GLCM correlation and GLCM homogeneity. This
has been detailed in [19], [20]. A complete set of 20 thermal
features were presented in Table 2.

In order to select the best features from the list, a sta-
tistical analysis was employed based on ANOVA test.
Kruskal-Wallis H test and Post-Hoc Test were executed
to result in the best fifteen thermal features (two were
rejected from Kruskal-Wallis Test that were Stdev_Diff and
Mean_area and three from Post-Hoc Test namely Freq_DTS,
Stdev_SP and Freq_WC). The final 15 features from each
ROI thermal image were then combined independently to
form the complete input feature dataset. The result from the
combination of these features promised a better performance
as explained in the following section.
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FIGURE 4. Summary of the responses of TD children from the questionnaires (i.e DEQ) for three
quadrants (i.e. “YES” signifies the same affective state as the targeted state and “NO” for otherwise.)

TABLE 2. A complete list of thermal features.

List of Thermal Features Comg:i;;i:::nsstlcal Denotations
Mean Mean_DTS
De-noise thermal signals (DTS) ]S:]t_zni:i Dz;/l:lt;iorrl]a] Stdev_DTS
equency ena Freq_DTS
with maximum amplitude
Median Median_DTS
Mean Mean_SP
. Standard Deviation Stdev_SP
Set-point values (SP) Frequency of a signal =
with maximum amplitude Freq_SP
Median Median_SP
Mean Mean_Diff
Difference (DIFF) Standard Dev1a11_on Stdev_Diff
Frequency of a signal .
R ? ) . Freq_Diff
with maximum amplitude
Median Median_Diff
Blood Vessel’s Area Mean Mean_area
T Standard Deviation Stdev_area
. Mean Mean_HMG
GLCM Homogeneity (HMG) Standard Deviation Stdev_HMG
Mean Mean_CRST
GLCM Contrast (CRST) Standard Deviation Stdev_CRST
. Mean Mean_CORR
GLCM Correlation (CORR) Standard Deviation Stdev_CORR

3) SELECTION OF QUALITY DATASETS

A high quality dataset should contribute to the optimum
accuracy in the classification process. Since the reference
model was formed based on the datasets from TD children,
the results from questionnaires were paramount to verify the
model. Therefore, a properly developed set of questionnaires
was designed. The approach was supported by [40] who
reported that children were better informants than parents or
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teachers when it concerned their own emotions. A set of ques-
tionnaires was developed by using a new tool for measuring
state Self-Reported emotions used by [41]. They conducted
various studies against the new tool, Discrete Emotions Ques-
tionnaires (DEQs) to measure eight distinct affective states:
anger, anxiety, disgust, desire, fear, happiness, relaxation and
sadness. The ANOVA results of the research have revealed
the subscales of the DEQ in properly detecting the manip-
ulated affective states. Their studies showed that the DEQs
were sensitive to several different manipulations of affective
states such as nonfictional recall, guided pictures, and graphic
stimuli to name a few. In our study, the application of DEQ to
find out the response of the subjects towards the audio-video
stimuli has resulted in the percentages shown in Fig. 4.

As can be seen from the pie chart, 60% from the total
responses matched the expected affective state of Quadrant 11
and Quadrant III (i.e answering “YES’’) whereas 75% of the
responses matched the Quadrant I. Thus, only the datasets
from the “YES” group were chosen to be included in the
development of the reference model so to form the best
classifier.

IV. RESULTS

In the research study, there were two sample groups involved
TD and ASD children, correspondingly. The ability to
regulate affective states between the groups was assumed to
be asymmetrical due to the neurodevelopmental difference
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that affects the affective states regulation. An exploratory and
separate analysis was executed to examine the performance
accuracy by varying the scaling factors a and the results were
presented.

A. ANALYSIS OF WAVELET SCALES

The recorded thermal video from TD children formed the
basis to pinpoint the changes in facial expression for different
affective states. Fear affective state was the only one chosen
as a guideline to confirm the identified location as it is a uni-
versal emotion or affective state with typical and unique facial
expression by Ekman [39]. In the thermal images, the fear
face can be observed with known prescribed description such
as a dropped open jaw and the lips stretched horizontally
backwards as depicted in Fig.5b.

Therefore, a visual observation was made to spot the sim-
ilarity in time for the corresponding fear expression with
the output of CWT coefficients. The red color shown in the
scalogram was the maximum energy generated while purple
color represents the least amount of energy. The energy was
computed such that the center frequency of the wavelets at
the analyzed scales evenly sample the frequency range from
0 to sampling rate/2. The central frequency of a wavelet
is inversely proportional to the scale. The resulting scalo-
gram is a kind of joint time-frequency representation with

a)

an adaptive time-frequency resolution. For example, at the
chosen scale a=256, the energy was computed at frequency
range from 0 to 0.002 Hz. As can be seen in the scalogram
(Fig. 6e), the maximum of energy was clearly charted from
24 to 34 seconds and yet, in the study, the energy was taken
from green color and onwards. The chosen range of energy
was mapped accordingly with the fear facial expression of
the child that was a dropped open jaw and lips stretched
backwards. The comparison between scaling factors were
also conducted on the same child to ensure the validity of the
chosen scaling factor.

As noted in the Fig. 6b, c and d, three signals were pro-
duced and analyzed namely de-noise temperature signals,
the setpoint values and the difference between de-noise ther-
mal signal and setpoints values. The thermal signals extracted
from mean intensities in a series of thermal images was
formed then filtered using a Morlet wavelet filter to gen-
erate a clean and clear pattern. After that, a hypothalamic
setpoint and differences between hypothalamic setpoints and
de-noise thermal signals were derived. The hypothalamic
setpoints were computed from the average of temperature
readings over three seconds period. The period was the
fastest time to detect any change in affective state [42]. The
inter-threshold range is the range of hypothalamic setpoints
within which no thermoregulatory mechanism is required

The Face of Fear

1. Eyebrows raised amd
pulled together

2. Raised upper eyelids

3. Tensed lower eyelids

4. Jaw dropped open and
lips stretched horizontally
backwards

b)

FIGURE 5. a) Fear facial expression by Paul Ekman Group b) Thermal images of TD children

for fear facial expression.
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FIGURE 6. a) The recorded fear affective state response in thermal image for TD child #3. b) The thermal readings in ° C c)The computed average
setpoints for every 3 secs d) The difference between filtered signals and average Setpoint e) A scalogram where it shows the energy projected from

the convolution of thermal signals and Morlet wavelet at scale a=256.

or activated. A ground study by [43] has highlighted that
the inter-threshold range with no activation of autonomic
effector was about 0.3°C. When a person was induced with
specific emotion, the hypothalamus in the brain sensed the
changes in the temperature above the inter-threshold value,
and reacted upon it by activating the thyroid gland so to
produce hormones to control the phenomenon of vasocon-
striction and vasodilation of blood vessels and hence affect
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the blood flow. As observed in Fig. 6¢c, the hypothalamic
setpoints seemed to change to a new setpoint value within
the selected range of energy as the indication of autonomic
response. To emphasize the findings, the heuristical observa-
tions were done to select the best scale where the scales were
tested to have varied value with the power of two as such
a = 2,4, 16, 32, 64, 128, 256 and the results were shown
in Fig. 7.
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The results have remarked the effects of the location of
the event occurrence within the session. The smaller value
of a would miss any event triggered meanwhile a large scale
would lead to a wide coverage of detection thus mismatched
the facial expression. The best scaling factor of 256 was
finally chosen to locate the occurrence of affective states for
all TD children. To note, some of the subjects produced fear
expression in multiple events. The significant findings was
critical and has proven as evidence to further deploy the AWT
in the affective states classifier development process.

B. PERFORMANCE OF CLASSIFIER

Three classes of affective states from Russell’s Circumplex
model [44] were investigated to represent three different
quadrants in the model namely Quadrant I, Quadrant II and
Quadrant III as shown in Fig.1. The specific affective states
were distinguished by the degree of valence and arousal
measurements in the respective quadrants. In this research,
the type of affective states under study were happy as it is
the only state having positive valence, anger or fear which
are located at the negative valence axis with high degree of
arousal and sad which is a negative valence affective state
with low arousal.

A k-NN classifier was selected due to its low compu-
tational cost but relatively high performance, and applica-
ble simplexes approach which worked fine in the study.
The relatively small number of data (57 subjects) from the
self-collected data of TD and ASD subjects and low dimen-
sionality features also contributed to the selection of k-NN
classifier. The k-NN classifier is a non-parametric method
which works by determining a cluster of k objects in train-
ing dataset which is the nearest to the test object. In this
work, a heuristically analysis was done to determine the
best k neighbors in k-NN classifier by using a five fold
Cross-Validation (CV) technique in which 80% were used
for training and the remaining 20% used for testing. The
cross-validation was done independently between TD and
ASD datasets. The best results were obtained at k=5.

In the research study, a cross-validation was chosen to
statistically evaluate the performance of the machine learning
models on a limited data sample. The k-fold cross-validation
technique is an ideal method because the technique increases
the chances to train on multiple train-test separations hence,
gives a better indication on the performance towards the
unseen data.

1) TD CHILDREN

The selection of scaling factor plays an important role to
detect occurence of the induced affective state. However,
the improper scaling might possibly lead to a different loca-
tion of event that should match the occurence of affective
states and thus, reducing the performance accuracy of the
classifier. Since there were three different classes of affective
states under study, a number of heuristic trials was conducted
using different value of scaling factor a from a=32 to a=256.
The results from the TD children were tabulated in Table 3
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TABLE 3. The matched occurrence of affective states for different scaling
factors for TD subjects in percent when algorithm was run automatically.

Affective States | a=32 | a=64 | a=128 | a=256
Quadrant [ 0% | 0% | 16% | 84%
(Happy)

Quadrant II 0% | 4% | 18% | 78%
(Fear)

Quadrant III

(Sad) 0% 0% 22% 78%

where it can be seen that the highest matched occurrence of
affective states in percent happened at a=256.

Subsequently, a cross-validation of the classifier was per-
formed using the best a value (i.e. 256) and the result showed
in Table 4 was promising with the average accuracy of 88%
in classifying the three affective states.

TABLE 4. The percentage in accuracy of k-NN classifier among TD
children.

Affective Accuracy (%) Average
States QuadrantI | QuadrantIl | QuadrantIII | Acuracy
(Happy) (Fear) (Sad) (%)

Quadrant I

88 8 4
(Happy) 38
Quadrant IT 5 38 7
(Fear)
Quadrant I1I
(Sad) 5 6 89

With respect to the other studies on affective state
recognition based on thermal images, the performance of
classification model proposed in the study was on par. For
example, Basu, Routray and Deb [12] has applied the his-
togram features to classify affective states in adults. The
features were then the imaging features in which the greyscale
intensity values were taken into measurement. The features
were used in a classification of four affective states anger,
fear, happy and sad with the accuracy of 81.95%. In a similar
study, [13] reported an excellent performance with accuracy
of 97.00% for a distance classifier using principal component
analysis (i.e. eigen-faces for feature extraction) on adults
facial thermal images. However, the study was focused on the
facial expression in the thermal images. Meanwhile, in [16],
the authors presented a new marker of affective arousal in
facial thermal imaging where the ROI was focused on the
tip of the nose region on adults. The results accorded the
accuracy at 89.90% for a different set of affective states
(happiness, disgust, fear and sadness). Furthermore, a Deep
Boltzmann Machine has also been used in the affective states
classification as reported in [17] where the implementation
of thermal databases of facial expressions, includes 38 adult
subjects. They obtained the accuracy of 62.90% for clas-
sification of negative and positive valence affective states.
In the latest study found in [18], the authors leveraged on
the emissivity variation values of the thermal camera to clas-
sify five affective states namely happiness, surprise, disgust,
fear and sadness. The results accorded a mean accuracy
of 85.25%.
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2) ASD CHILDREN

The same procedure and algorithms in data analysis to
develop the affective states classifier for TD children were
extended to the ASD children datasets. The results were
tabulated in Table 5.

TABLE 5. The percentage in accuracy of k-NN classifier among ASD
children at a=256.

Affective Accuracy (%) Average
States QuadrantI | QuadrantIT | Quadrant IIT | Acuracy
(Happy) (Fear) (Sad) (%)

Quadrant T

88 4 8
(Happy) 33
Quadrant IT N
(Fear) 11 72 17
Quadrant I11
(Sad) 8 4 88

It was interesting to note that the results were sporadic and
decreased. Thus, further investigation was conducted to scru-
tinize the procedure and analysis. As reported by Paula [45],
the power spectrum of EEG signals collected from the ASD
children when subjected to visual stimulus of happy, neutral,
and angry faces revealed that there was an increase in power
in the higher frequencies region of the signals recorded from
frontal, occipital, and center-parietal areas when compared to
control group. Thus, there was a need to look into the empir-
ical evidence in the approach as there was high probability
that ASD children might emit different pattern of signals alike
TD children. Hence, the same procedure was repeated for
ASD children but now with focused attention given to the
thermal video images by manually pinpoint the resemblance
in the timing of matched affective states with the actual facial
expression. As happy was generally recognizable affective
state of the ASD children [46], thus, the state became the
reference state for the case of ASD. The chosen subject (ASD
#4) was selected by therapist. He has been diagnosed with
mild autism and had attended a few sessions of behavioral
therapy. In addition, he has been taught with few types of
affective states and ways to react in appropriate manners. It is
important to note that the stimuli was individually designed
and suggested by the parents in which the subject favorite
audio-video clip was presented to induce the happy response.
The algorithm was then executed to identify the best scaling
factor, a and the results were shown in the scalogram of Fig.8.

When matched to the actual expression in thermal image as
shown in Fig. 9 it was noted that the best matched occurrence
of affective state happened when the scaling factor, a was set
to 32.

The smaller value of scaling factor, a signified a smaller
magnitude of time and it was inversely proportional to fre-
quency which correlated with the work of Paula [45]. The
result also indicated a unique observation in the data of ASD
children in which the higher scaling factor, a at 256 has
also resulted in a good match similar to TD children. This
might suggest, the wide spectrum nature of the ASD, and as
aresult a specialized algorithm was developed to find the best
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matched occurrence for ASD children based on the best two
scaling factors, a of 32 and 256 as shown in Table 6.

TABLE 6. The matched occurrence of affective states for different scaling
factors for ASD subjects in percent when the algorithm was run
automatically.

Affective States | a=32 | a=64 | a=128 | a=256
Quadrant I 8% | 0% | 0% | 62%
(Happy)

Quadrant IT 50% | 0% | 0% | 50%
(Fear)

Quadrant III

o) 46% | 0% | 0% | 54%

Therefore, to exclusively focus into the development of
affective state classifier for ASD children, the decision to
split the classifier into two separate models was done. It was
expected to increase the performance accuracy of the clas-
sifier. The datasets of ASD children were based on the
response verified by the therapist as the DEQ approach was
not applicable to ASD children. The detailed breakdown of
the performance accuracy for the unique classification model
of ASD children with fifteen extracted thermal features at
two-option of scaling factors, a was tabulated in Table 7.

TABLE 7. The percentage in accuracy of k-NN classifier among ASD
children at a fixated value of @ at 32 and 256 and the switched a
technique.

Affective States |35 afzcsc; racﬁﬁ” )and a=256
8;‘;:;;‘;“ ! 84 88 86
%‘;:f;ant 1 78 72 80
?Sl;z()lrant 11 32 38 93
Average 82 83 88

The average accuracy was noted at 88% which is remark-
ably comparable to the classifier of TD children at 88%.
The affective state that accorded the highest classification
accuracy was sad (Quadrant III), then happy (Quadrant I)
followed by state fear (Quadrant II).

The relatively lower performance accuracy to recognize
the affective state fear might stem to the fact that the ASD
children were born with impairment in limbic area especially
amygdala that contributed to the deficiency in most emotions.
In particular, the amygdala plays a vital role in processing
negative emotions with high arousal such as fear, thus, it was
only speculative that it might also affect the overall perfor-
mance of the ASD children affective state classifier. This is
consistent with supposition that the ASD children have defi-
ciency in the affective state regulation especially when associ-
ated with impairment of amygdala [47]. The degree in valence
correlates mainly with the activation of orbitofrontal cortex,
whereas arousal correlates with activation of the amygdala.
The ASD children with impaired amygdala were found to
have more deficits in processing static negative emotions than
positive emotions [48]. Likewise, the amygdala deficit might
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FIGURE 8. The scalogram output for ASD children at varying scaling factors, a at a) 32 b) 64 c) 128 d) 256.

lead the ASD children to abnormal fear response such he/she
may either show too little or too much fear or none, when
compared to TD control children.

C. QUESTIONNAIRES ANALYSIS

In many research [49]-[51] and from the consultation of
expert therapists, guided questionnaire responded by the care-
givers, done in a very controlled and structured environment
was the best option to gage the affective state of the autistic
children. In this research the questionnaire was used to verify
the classifier and help guided the development of classifier
in the prior stage based on the response obtained from the
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control group (the TD children who answered the question-
naire themselves). Otherwise similar signal processing tech-
nique were applied on the thermal signals from both group of
subjects.

The performance of the independent affective state clas-
sifier of ASD children was validated against the analysis of
input response from therapist-report questionnaires. A Leave
One-Out Cross Validation (LOCV) technique was executed
to verify the ASD classifier where data from a child was
completely removed from the training dataset and solely used
as a testing dataset. The process was reiterated with another
set of unique data until all the data has been assigned as a
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FIGURE 9. The recorded thermal response and results from AWT analysis with scaling factor at a=32.

TABLE 8. Kappa statistics of the therapist reading and classifier's output
of the affective state recognition of ASD children.

Inter-raters

Affective States Therapist vs. ASD Thermal Classifier

Kappa, < | Standard Error | p-value
Quadrant I 0.831 0.082 <0.005
(Happy)
Quadrant 11 0.560 0.075 <0.005
(Fear)
Quadrant ITT
(Sad) 0.560 0.075 <0.005

testing dataset. The therapist is an experienced occupational
therapist with a qualification in Bachelor (Hons) in Occupa-
tional Therapy, Ui'TM Puncak Alam. She has been involved in
the special needs children (ASD) early intervention training
for more than 5 years. She responded the questionnaires
based on her experiences and observations on the children’s
daily behavior. The inter-rater analysis was then executed to
find the reliability of therapist rating of the affective states
and the classifier’s output. Weighted kappa (x) with linear
weights [52] was run to determine the agreement between all
the actual affective states and the output from affective state
classifier for ASD. The results were tabularized in Table 8.
There was a statistically significant agreement between
the therapist-prediction and classifier-prediction, x=0.560,
p < 0.005 for affective states in Quadrant II and III respec-
tively. The strength of agreement was classified as medium
to good according to [53] and good according to [54]. On the
other hand, a nearly perfect agreement was found between
therapist-prediction and classifier prediction where x =0.831,
p < 0.005 for an affective state in Quadrant I. The result
explained that, there was an excellent agreement between
the classifier’s affective states of ASD children and therapist
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reading for happy. This shows that the happy is the easiest dis-
tinguishable and noticeable affective state. This explanation
was in accordance to the previous meta analysis conducted by
Mirko [46] where they summarized the individuals with ASD
to have difficulties in recognizing five basic affective states or
emotions namely anger, disgust, fear, sad and surprise. The
only state that was mostly recognized was happy. However,
there were still some inconsistent reports that suggested on
the sturdiness of determination of distinct affective states in
ASD especially associating to negative affective states. The
states fear and sad were suspected to post a challenge in
visual observations by therapist. Furthermore, there were also
researchers that considered the assessments of the behavior
by the therapist may need to be tailored to a more specific
question. For instance, for sad state, it was better to be corre-
lated with a measure of empathy in daily life and experience,
rather than droopiness in life. The observations might some-
times tend to relate to the therapist personal experiences as
well.

V. CONCLUSION

This study has presented the application of the Wavelet
Transform to instantaneous detect the occurrence of affective
states during experiments with high accuracy. The method
contributed to the development of affective state classifier to
classify three distinct emotions induced by the audio-video
stimuli. The agreement between both raters (therapist and
independent affective state classifier of ASD children) ver-
ifies the model and justifies the needs of the thermal imaging
modalities and the use of non-invasive tool in recognizing
the affective states especially the negative valence affective
states. The outcome of the research work is a thermal based
classifier for affective state model of autistic children. It is
envisaged that the classifier could be used to increase the
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efficacy and efficiency of the rehabilitation or training regi-
mens. The therapist will be more aware of the ““true” affective
states of the autistic children during the session and allows
them to react and address the children accordingly.

VI. LIMITATIONS

The study has successfully developed an affective state clas-
sifier for three basic emotions. More affective states based on
arousal-valence model should be investigated to generalize
the result in the future study.
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