Characterisation and computational analysis of a novel lipase nanobio-based reagent for visualising latent fingerprints on water-immersed glass slides

Departments of Chemistry, Enzyme Technology and Green Synthesis Research Group, Centre for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia

Abstract

Considering the significant evidential values of fingerprints in underwater criminal investigations and the need to visualise them using a user- and environmentally-friendly reagent, development of a novel, rapid and relatively greener nanobio-based reagent (NBR) is deemed beneficial. Lipase from the commercial Candida rugosa immobilised onto acid-functionalised multi-walled carbon nanotubes (NBR) was used as the safer and cheap lipid-sensing reagent to visualise groomed whole/split fingerprints on non-porous objects immersed in stagnant tap water for up to 30 days under a laboratory-controlled setting. Attenuated Total Reflectance – Fourier Transform Spectrometry, Field Emission Scanning Electron Microscopy and bioinformatics (molecular docking and molecular dynamics simulations) were employed to characterise and confirm the attachment of NBR onto the lipid constituents of wet fingerprints. Chromatographic results further confirmed the presence of n-hexadecanoic and octadecanoic acids on fingerprints up to 30 days of immersion. Thus, NBR may potentially be useful as the future state-of-the-art fingerprint visualisation technology. © 2020 Elsevier Ltd

Related documents

Novel safranin-tinted Candida rugosa lipase nanoconjugates reagent for visualizing latent fingerprints on stainless steel knives immersed in a natural outdoor pond

Amino acid profiling from fingerprints, a novel methodology using UPLC-MS

Investigations into sampling approaches for chemical analysis of latent fingermark residue

View all related documents based on references

Find more related documents in Scopus based on:

Authors Keywords
The authors are thankful to the Ministry of Education Malaysia for providing the Fundamental Research Grant Scheme (R.J130000.7854.4F990) for conducting a research project on visualisation of latent fingerprints on immersed non-porous objects using lipase reinforced nanoconjugates. The authors would also like to extend heartiest gratitude to Dr. Dzulkiflee Ismail (Universiti Sains Malaysia) for assisting in obtaining the ethical approval, and our undergraduate students Nur Ain Naqwa, Anis Syahirah and Siti Asmah, students of bioinformatics Fatin Syamimi, Aina Bahaman, Mohammad Hakim, Mohammad Hasanuddin and Mohamad Ariff as well as the fingerprint donors for the kind assistance throughout this research.

ISSN: 13595113
CODEN: PBCHAE
Source Type: Journal
Original language: English

References (68)

1. Cadd, S., Islam, M., Manson, P., Bleay, S.
 Fingerprint composition and aging: A literature review
 http://www.scienceandjusticejournal.com/contact
 doi: 10.1016/j.scijus.2015.02.004

2. Dixon, P.
 Surveillance in America: An Encyclopedia of History, Politics, and the Law
 (2016). Cited 2 times.
 ABC-CLIO Santa Barbara, California, USA

3. Neumann, C., Champod, C., Yoo, M., Genessay, T., Langenburg, G.
 Quantifying the weight of fingerprint evidence through the spatial relationship, directions and types of minutiae observed on fingermarks
 www.elsevier.com/locate/forsciint
 doi: 10.1016/j.forsciint.2015.01.007

View at Publisher
Saferstein, R.
Pearson Education Upper Saddle River, NJ

Stiefel, C.
Fingerprints: Dead People Do Tell Tales (2012)
Enslow Publishing Berkeley Heights, NJ

Becker, R.F.
CRC Press Boca Raton, FL

doi: 10.1016/j.inffus.2018.10.001

Rohatgi, R., Sodhi, G.S., Kapoor, A.K.
www.journals.elsevier.com/egyptian-journal-of-forensic-sciences
doi: 10.1016/j.ejfs.2014.08.005

al Oleiwi, A., Hussain, I., McWhorter, A., Sutton, R., King, R.S.P.
www.elsevier.com/locate/forsciint
doi: 10.1016/j.forsciint.2017.05.008

Yamashita, B., French, M., Bleay, S., Cantu, A.A., Inlow, V., Ramotowski, R., Sears, V.G., (...), Wakefield, M.
National Institute of Justice Washington, DC

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Page Numbers</th>
<th>Cited Times</th>
<th>DOI</th>
<th>Publisher Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Ramsden, J.</td>
<td>Bioinformatics: An Introduction</td>
<td></td>
<td></td>
<td>2015</td>
<td>2 ed.</td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
26 Field, D., Tiwari, B., Snape, J.

Bioinformatics and data management support for environmental genomics (Open Access)

doi: 10.1371/journal.pbio.0030297

View at Publisher

27 Zhang, L., Loh, K.-C., Lim, J.W., Zhang, J.

Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review

https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews
doi: 10.1016/j.rser.2018.10.021

View at Publisher

28 Netz, P.A.

Benzothiadiazoles as DNA intercalators: Docking and simulation

doi: 10.1002/qua.24174

View at Publisher

29 Brahmachari, G.

Lipase-Catalyzed Organic Transformations: A Recent Update

ISBN: 978-012803746-1; 978-012803725-6
doi: 10.1016/B978-0-12-803725-6.00013-3

View at Publisher

30 Ben Salah, R., Ghamghui, H., Miled, N., Mejdoub, H., Gargouri, Y.

Production of butyl acetate ester by lipase from novel strain of Rhizopus oryzae

doi: 10.1263/jbb.103.368

View at Publisher

31 Jafarian, F., Bordbar, A.-K., Zare, A., Khosropour, A.

The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets

www.elsevier.com/locate/ijbiomac
doi: 10.1016/j.ijbiomac.2018.01.133

View at Publisher

Enzymatic esterification of fatty acid esters by tetraethylammonium amino acid ionic liquids-coated Candida rugosa lipase

doi: 10.1016/j.molcatb.2012.03.003

View at Publisher
33 Grochulski, P., Li, Y., Schrag, J.D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., (...), Cygler, M.
Insights into interfacial activation from an open structure of Candida rugosa lipase
View at Publisher

SiO$_2$ microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization
www.elsevier.com/locate/ijcej.2018.11.052
View at Publisher

35 Girod, A., Weyermann, C.
Lipid composition of fingerprint residue and donor classification using GC/MS
doi: 10.1016/j.forsciint.2014.02.020
View at Publisher

36 Rajan, R., Zakaria, Y., Shamsuddin, S., Nik Hassan, N.F.
Fluorescent variant of silica nanoparticle powder synthesised from rice husk for latent fingerprint development (Open Access)
https://link.springer.com/journal/41935/7/1/page/1
View at Publisher

37 International Fingerprint Research Group
Guidelines for the assessment of fingerprint detection techniques

38 Weyermann, C., Roux, C., Champod, C.
Initial Results on the Composition of Fingerprints and its Evolution as a Function of Time by GC/MS Analysis
doi: 10.1111/j.1556-4029.2010.01523.x
View at Publisher

39 Morris, G.M., Ruth, H., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.
Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility
http://www3.interscience.wiley.com/cgi-bin/fulltext/122365050/PDFSTART
doi: 10.1002/jcc.21256
View at Publisher

40 Trott, O., Olson, A.J.
Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
http://www3.interscience.wiley.com/cgi-bin/fulltext/122439542/PDFSTART
Schrödinger, L.
The PyMOL Molecular Graphics System

Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
(Open Access)
http://www.jcheminf.com/content/pdf/1758-2946-4-17.pdf
doi: 10.1186/1758-2946-4-17
View at Publisher

Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., (…), Mark, A.E.
An Automated force field Topology Builder (ATB) and repository: Version 1.0
doi: 10.1021/ct200196m
View at Publisher

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.
GROMACS: Fast, flexible, and free
doi: 10.1002/jcc.20291
View at Publisher

Improvement of enzyme activity, stability and selectivity via immobilization techniques
doi: 10.1016/j.enzmictec.2007.01.018
View at Publisher

Mohamad, N.R., Buang, N.A., Mahat, N.A., Lok, Y.Y., Huyop, F., Aboul-Enein, H.Y., Abdul Wahab, R.
A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes
www.elsevier.com/locate/enzmictec
doi: 10.1016/j.enzmictec.2015.02.007
View at Publisher

Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates
http://www.elsevier.com/wps/find/journaldescription.cws_home/713883/description#description
doi: 10.1016/j.fbp.2015.08.005
View at Publisher

Wahab, R., Mahat, N.
Protocols and Methods Fodeveloping Green Immobilized Nanobiocatalysts for Esterification Reactions
(2016)
Penerbit UTM, Universiti Teknologi Malaysia
56 Croxton, R.S., Baron, M.G., Butler, D., Kent, T., Sears, V.G.
Variation in amino acid and lipid composition of latent fingerprints
doi: 10.1016/j.forsciint.2010.03.019
View at Publisher

57 Cadd, S.J., Mota, L., Werkman, D., Islam, M., Zuidberg, M., De Puit, M.
Extraction of fatty compounds from fingerprints for GCMS analysis
http://www.rsc.org/Publishing/Journals/AY/About.asp
doi: 10.1039/c4ay02434f
View at Publisher

58 Aquino-Bolaños, E.N., Mapel-Velazco, L., Martín-del-Campo, S.T., Chávez-Servia, J.L., Martínez, A.J., Verdalet-Guzmán, I.
Fatty acids profile of oil from nine varieties of Macadamia nut (Open Access)
www.tandf.co.uk/journals/titles/10942912.asp
doi: 10.1080/10942912.2016.1206125
View at Publisher

59 Nasaruddin, M.H., Noor, N.Q.I.M., Mamat, H.
Proximate and fatty acid composition of Sabah yellow durian (Durio graveolens)

60 Fatima, T., Snyder, C.L., Schroeder, W.R., Cram, D., Datla, R., Wishart, D., Weselake, R.J., (...), Krishna, P.
Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed (Open Access)
http://www.plosone.org/article/fetchObjectAttachment.action?
uri=info%3Adoi%2F10.1371%2Fjournal.pone.0034099\&representation=PDF
doi: 10.1371/journal.pone.0034099
View at Publisher

61 Eldridge, G.
Control of Biofilm with a Biofilm Inhibitor
Sequoia Sciences Inc United States of America

Tissue Culture and Genetic Engineering of Oil Palm
ISBN: 978-012804346-2; 978-098189369-3
doi: 10.1016/B978-0-98189369-9-3.50007-1
View at Publisher
Schmitt, J., Brocca, S., Schmid, R.D., Pleiss, J.

Blocking the tunnel: Engineering of Candida rugosa lipase mutants with short chain length specificity

www3.oup.co.uk/proeng
doi: 10.1093/protein/15.7.595

View at Publisher

Stoker, H.S.

Chemical Bonding: The Covalent Bond Model, General, Organic & Biological Chemistry Cengage Learning

(2015) , pp. 112-144.
Boston, MA

Vanleeuw, E., Winderickx, S., Thevissen, K., Lagrain, B., Dusselier, M., Cammue, B.P.A., Sels, B.F.

Substrate-Specificity of Candida rugosa Lipase and Its Industrial Application

http://pubs.acs.org/en/journals/journal/acsse

doi: 10.1021/acssuschemeng.9b03257

View at Publisher

Tejo, B.A., Salleh, A.B., Pleiss, J.

Structure and dynamics of Candida rugosa lipase: The role of organic solvent

doi: 10.1007/s00894-004-0203-z

View at Publisher

Pokhrel, R., Bhattarai, N., Baral, P., Gerstman, B.S., Park, J.H., Handfield, M., Chapagain, P.P.

Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140

http://pubs.rsc.org/en/journals/journal/prcc

doi: 10.1039/c9cp01550b

View at Publisher

Guncheva, M., Tashev, E., Zhiryakova, D., Tosheva, T., Tzokova, N.

Immobilization of lipase from Candida rugosa on novel phosphorous- containing polyurethanes: Application in wax ester synthesis

View at Publisher

© Copyright 2020 Elsevier B.V., All rights reserved.