The purpose of Internet of Things-based Smart Facilities Management Services (IoTbSFMS) is to increase the efficiency and effectiveness of facilities management services through improvement and innovation. Despite a common understanding that individual technology readiness and overall quality is an essential element in IoT-based technology success, there is a dearth of theoretical and empirical research on these elements as a facilitator of successful IoTbSFMS implementation. This study develops the IoTbSFMS validated instrument and proposes an integrated approach of instrument development through a multi-stage technique and rigorous statistical testing. Thirteen IoT experts had evaluated the content validity where two measurement items were excluded as per expert review's suggestion, which remaining 11 constructs and 58 measurement items. The process was followed by a pre-test assessment to determine the effectiveness of the measurement items. Finally, a pilot study assessment was conducted among 33 respondents. The collected data were analysed using SPSS, Smart-PLS, and JASP software. As a result, the Content Validity Index (CVI) for the final IoTbSFMS constructs and items was deemed acceptable (CVI = 0.82). The internal consistency reliability of the measurement instruments showed that the Cronbach's alpha and McDonald's omega for independent variables ranged from 0.682 to 0.989 and 0.683 to 0.989. These values suggest that all the constructs had acceptable validity and reliability. This paper contributes in encouraging researchers to look beyond the traditional approach in measuring the internal consistency reliability of the measurement instruments. © 2019 IEEE.
Funding details

<table>
<thead>
<tr>
<th>Funding sponsor</th>
<th>Funding number</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badan Tenaga Nuklir Nasional</td>
<td>BATAN</td>
<td></td>
</tr>
</tbody>
</table>

Funding text

ACKNOWLEDGMENT This study was funded by University Tenaga Nasional Internal Grant (UNIIG) 2018 and Malaysian Public Service Department.

References (51)

iISBN: 978-153865183-4
doi: 10.1109/GreenTech.2018.00036

View at Publisher

6 Termizi, A.A.A., Ahmad, N., Omar, M.F., Wahap, N.A., Zainal, D., Ismail, N.M.
Smart facility application: Exploiting space technology for smart city solution (Open Access)
http://www.iop.org/EJ/volume/1755-1315
doi: 10.1088/1755-1315/37/1/012049
View at Publisher

7 MacKenzie, S.B., Podsakoff, P.M., Podsakoff, N.P.
Construct measurement and validation procedures in MIS and behavioral research: Integrating new and existing techniques
http://misq.org/misq/downloads/
View at Publisher

8 Ali, N., Tretiakov, A., Whiddett, D.
A content validity study for a knowledge management systems success model in healthcare

9 Shrotryia, V.K., Dhanda, U.
Content Validity of Assessment Instrument for Employee Engagement (Open Access)
https://in.sagepub.com/en-in/sas/journal/sage-open
doi: 10.1177/2158244018821751
View at Publisher

JASP: Graphical statistical software for common statistical designs (Open Access)
https://www.jstatsoft.org/index.php/jss/article/view/v088i02/v88i02.pdf
doi: 10.18637/jss.v088.i02
View at Publisher

11 Dunn, T.J., Baguley, T., Brunsden, V.
From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)2044-8295
doi: 10.1111/bjop.12046
View at Publisher

12 Atkin, B., Bildsten, L.
Editorial: A future for facility management
http://www.emeraldinsight.com/info/journals/ci/ci.jsp
doi: 10.1108/CJ-11-2016-0059
View at Publisher
Bibri, S.E.
The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability
http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description

Chen, W., Chen, K., Cheng, J.C.P., Wang, Q., Gan, V.J.L.
BIM-based framework for automatic scheduling of facility maintenance work orders
doi: 10.1016/j.autcon.2018.03.007

Almanasreh, E., Moles, R., Chen, T.F.
Evaluation of methods used for estimating content validity
http://www.journals.elsevierhealth.com/periodicals/rsap
doi: 10.1016/j.sapharm.2018.03.066

Clark, V.L.P., Creswell, J.W.

Straub, D., Gefen, D.
Validation guidelines for is positivist research
March

Chatterjee, S., Kar, A.K., Gupta, M.P.
Success of IoT in Smart Cities of India: An empirical analysis
http://www.elsevier.com/locate/govinf
doi: 10.1016/j.giq.2018.05.002

Martínez-Caro, E., Cegarra-Navarro, J.G., García-Pérez, A., Fait, M.
Healthcare service evolution towards the Internet of Things: An end-user perspective
www.elsevier.com/inca/publications/store/5/0/5/7/4/0/
doi: 10.1016/j.techfore.2018.03.025

Fu, Y., Wu, W.
Behavioural informatics for improving water hygiene practice based on IoT environment
(Open Access)

View at Publisher
21. Gefen, D.
Research: A state-of-The-art assessment

22. Lam, K.W., Hassan, A., Sulaiman, T., Kamarudin, N.
Evaluating the Face and Content Validity of an Instructional Technology Competency Instrument for University Lecturers in Malaysia

23. Shirali, G., Shekari, M., Angali, K.A.
http://www.e-shaw.org/
doi: 10.1016/j.shaw.2017.07.010
View at Publisher

24. Grant, J.S., Davis, L.L.
Selection and use of construct experts for instrument development

25. Schmiedel, T., Vom Brocke, J., Recker, J.
Development and validation of an instrument to measure organizational cultures’ support of Business Process Management
doi: 10.1016/j.im.2013.08.005
View at Publisher

26. Recker, J., Rosemann, M.
The measurement of perceived ontological deficiencies of conceptual modeling grammars
doi: 10.1016/j.datak.2010.01.003
View at Publisher

27. Trizano-Hermosilla, I., Alvarado, J.M.
Best alternatives to Cronbach’s alpha reliability in realistic conditions: Congeneric and asymmetrical measurements (Open Access)
doi: 10.3389/fpsyg.2016.00769
View at Publisher

28. Chakraborty, A.P.R.
Estimation of greatest lower bound reliability of academic delay of gratification scale
29 Ercan, I., Yazici, B., Sigirli, D., Ediz, B., Kan, I.
Examining cronbach alpha, theta, omega reliability coefficients according to the sample size
http://tbf.coe.wayne.edu/jmasm/vol6_no1.pdf
doi: 10.22237/jmasm/1177993560
View at Publisher

30 Zinbarg, R.E., Revelle, W., Yovel, I., Li, W.
Cronbach’s α, Revelle’s β and McDonald’s ω : Their relations with each other and two alternative conceptualizations of reliability
doi: 10.1007/s11336-003-0974-7
View at Publisher

31 Viladrich, C., Angulo-Brunet, A., Doval, E.
A journey around alpha and omega to estimate internal consistency reliability
(Open Access)
http://revistas.um.es/analesps/article/download/analesps.33.3.268401/215531
doi: 10.6018/analesps.33.3.268401
View at Publisher

32 Peters, G.J.Y.
The alpha and the omega of scale reliability and validity

33 Jw, C.

34 Sekaran, U., Baugie, R.
West Sussex, UK: Wiley

35 Asderaki, F.
The impact of the Bologna process on the development of the Greek quality assurance system
doi: 10.1080/13538320902995758
View at Publisher

36 Black, A.K.
Language translation for mental health materials:- A comparison of current back-translation and skopostheorie-Based Methods
(2018) *Brigham Young University*

37 Saidon, I.M.
Memon, M.A., Ting, H., Ramayah, T., Chuah, F., Cheah, J.
A review of the methodological misconceptions and guidelines related to the application of structural equation modeling

Parasuraman, A., Colby, C.L.
An Updated and Streamlined Technology Readiness Index: TRI 2.0
http://www.sagepub.co.uk/journal.aspx?pid=105683
doi: 10.1177/1094670514539730

DeLone, W.H., McLean, E.R.
The DeLone and McLean model of information systems success: A ten-year update
http://www.tandfonline.com/loi/mmis20
doi: 10.1080/07421222.2003.11045748

Doll, W.J., Torkzadeh, G.
The measurement of end-user computing satisfaction

Doll, W.J., Torkzadeh, G.
Developing a multidimensional measure of system-use in an organizational context
doi: 10.1016/S0378-7206(98)00028-7

Seddon, P., Kiew, M.Y.
A partial test and development of deLone and McLean's model of IS success

Titah, R., Barki, H.
Nonlinearities between attitude and subjective norms in information technology acceptance: A negative synergy?
http://misq.org/misq/downloads/

Hill, R.
What Sample Size is Enough in Internet

Cooper, D.R., Schindler, P.S.
Pilot studies.

McNeish, D. Thanks coefficient alpha, We ' ll Take it from Here (2017) Psychological Methods. Cited 16 times. February

© Copyright 2020 Elsevier B.V., All rights reserved.