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Abstract

High performance electric double-layer capacitors (EDLCs) based on poly (vinyl 
alcohol) (PVA): ammonium thiocyanate (NH4SCN):Cu(II)-complex plasticized with 
glycerol (GLY) have been fabricated. The maximum DC ionic conductivity (σDC) of 
2.25 × 10-3 S cm-1 is achieved at ambient temperature. The X-ray diffraction (XRD) 
patterns confirmed that the addition of both Cu(II)–complex and GLY enhanced the 
amorphous region within the samples. Through the Fourier transform infrared (FTIR) 
the interactions between the host polymer and other components of the prepared 
electrolyte are observed. The FESEM images reveal that the surface morphology of 
the samples showed a uniform smooth surface at high GLY concentration. This is in 
good agreement with the XRD and FTIR results. Transference numbers of ion (tion) 
and electron (tel) for the highest conducting composite polymer electrolyte (CPE) are 
recognized to be 0.971 and 0.029, respectively. The linear sweep voltammetry (LSV) 
revealed that the electrochemical stability window for the CPE is 2.15 V. These high 
values of tion and potential stability established the suitability of the synthesized 
systems for EDLC application. Cyclic voltammetry (CV) offered nearly rectangular 
shape with the lack of Faradaic peak. The specific capacitance and energy density of 
the EDLC are nearly constant within 1000 cycles at a current density of 0.5 mA/cm2 

with average of 155.322 F/g and 17.473 Wh/Kg, respectively. The energy density of 
the EDLC in the current work is in the range of battery specific energy. The EDLC 
performance was found to be stable over 1000 cycles. The low value of equivalent 
series resistance reveals that the EDLC has good electrolyte-electrode contact. The 
EDLC exhibited the initial high power density of 4.960 × 103 W/Kg. 

Keywords: PVA polymer electrolyte; Glycerol plasticizer; Cu(II)-complex; 
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Electrochemical and EDLC.

1. Introduction

Supercapacitors (SCs) can be categorized into three kinds of electrochemical 

capacitor (EC) which are known as electric double-layer capacitor (EDLC), 

pseudocapacitor, and hybrid SCs. In the EDLC the electric energy is stored based on 

electrosorption process (charge-discharge) when the Helmholtz double layers are 

formed on porous electrodes through movement of ions inside the electrolyte [1]. 

Pseudocapacitor stores energy faradaically by chemical interaction between the 

electrolyte and electrode for example redox reaction. The process of charge storage 

used in hybrid capacitors is a mix of the both faradaic reaction and non-faradaic 

reaction. EDLC is the typical non-faradaic SC. The charge-discharge cycles just 

involve ions adsorption on the surface of the electrodes. It is promising to attain high 

energy density (Ed) and power density (Pd) using EDLC. [2-4]. ECs are devices which 

can occupy the spaces between battery and electrostatic capacitor with regard to Ed 

and Pd as shown in Ragone plot (see Figure 1). The Ragone plot is a chart employed 

for comparing the performance of several energy storage devices for example SCs, 

fuel cells, conventional capacitors, and batteries [5]. The achieved Ed in the current 

work is 17.473 Wh/Kg throughout 1000 cycles which is in the range of Ed of batteries 

(see Figure 1).  

An electrolyte film and two porous electrodes are included in the EDLC 

device. Mostly carbon-based electrodes are used for creating these SCs [5]. The 

different carbon-based electrode materials used in EDLCs are carbon aerogels, 

activated carbon (AC), carbon nanotubes, carbon nanosize, graphites, and carbon 

nanofibers [6]. AC is used in this study as an electrode because of its high 

conductivity, chemical stability, large surface area (>1000 m2g−1), cost effective, and 
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high porosity (>2 nm pore width) [7, 8]. At the same time, the electrolyte can be 

liquid electrolyte (LE), solid polymer electrolyte (SPE), gel polymer electrolyte 

(GPE) [9]. The SPE outweigh LE in many substantial characteristics such as 

electrolyte leakage, better safety, high flexibility, light weight, and excellent thermal 

stability [1, 10]. These features can essentially enhance the EDLC electrochemical 

performances. Additionally, the increased demand for flexible electronic devices 

resulted in an increasing trend of employing polymer hydrogels as the separators and 

electrolytes for flexible electrochemical energy storage devices [11]. Compared to 

SPE, hydrogel electrolyte consists of elastic crosslinked hydrated polymer chains that 

trap water in the interstitial spaces of the polymer matrices mainly by surface tension 

[12]. This makes the hydrogel electrolyte appear usually wet, which gives a tough and 

soft property to the electrolyte [12].

In recent decades, biodegradable polymers have been widely studied to be 

employed in the renewable energy sources and electrochemical energy storage 

devices to solve the environmental issues [13]. However, the electrical and 

mechanical properties of these polymers need enhancement in order to be used in the 

energy devices [13]. Various host polymers have been widely investigated in this 

field, such as chitosan [14], hydroxylethyl cellulose (HEC) [15], Polyethylene oxide 

(PEO) [16], poly(vinyl alcohol) (PVA) [17], methylcellulose (MC) [18], N, N-

dimethyl acrylamide (DMA) [19], and polyacrylamide-co-acrylic acid (PAAC) [20]. 

Previous studies are shown that both mechanical and electrical properties of PVA can 

be considerable enhanced when doped with glycerol (GLY) and different salts such as 

calcium chloride (CaCl2) and sodium chloride (NaCl) [21,22]. 
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In this research, poly (vinyl alcohol) (PVA) was preferred as a host polymer 

due to its biodegradable capability, low cost, and easy processability. Ammonium 

thiocyanate (NH4SCN) was used in the current study as a low lattice energy salt to 

deliver H+ to the CPE system [23]. Srivastava et al. [24] have stated that the charge 

carrier in PEO combined with NH4SCN is the H+. NH4SCN has low lattice energy of 

605 kJ.mol-1 compared to other ammonium salts, such as NH4Br (667 kJ mol-1), 

NH4Cl (694.7 kJ mol-1), NH4NO3 (648.9 kJ mol-1), NH4F (834.5 kJ mol-1), NH4I (626 

kJ mol-1), etc. [25, 26]. Therefore, it is possible to dissociate it easily into cations and 

anions when inserted in water as a solvent. This means, larger number ammonium 

ions are offered by NH4SCN to the polymer. The addition of Cu(II)–complex to the 

polymer electrolyte (PE) was attempted to improve the performance of the electrolyte 

films via establishing an amorphous nature which is crucial for ion transport process. 

In this study, glycerol (GLY) was also chosen as an appropriate plasticizer since it 

enhances DC conductivity (σDC) because of the existence of three groups of hydroxyl 

(OH). It is believed that the high dielectric constant value (ɛr) of 42.5 for GLY can 

reduce the attraction force amongst the cations and anions of the salt, and also weaken 

the force between chains of the polymers [27, 28]. 

In our previous study it was revealed that the amorphous structure of PVA 

polymer enhanced through the inclusion of Cu(II)–complex [29]. To the best of our 

knowledge, no study has been reported in literature regarding the role of metal 

complex (e.g. Cu(II)-complex) or metal framework on EDLC performance. Mohamad 

& Arof, [30] have fabricated the plasticized system of PVA–KOH–Propylene 

carbonate (PC)–Al2O3. The results showed that the samples conductivity could be 

significantly increased with raising the PC plasticizer content [30]. Lim et al., [1] 

fabricated EDLC device based on AC electrodes and PVA:LiClO4:TiO2. They are 
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noted that the insertion of TiO2 into the PVA–LiClO4 system resulted in the σDC of 1.3 

× 10-4 S cm-1 and specific capacitance (Cd) value of 12.5 F g-1. Nonetheless, the Cd of 

the CPE is still low and the addition of TiO2 was not significantly enhanced the 

electrochemical performances of the EDLC. Thus, this work aims to improve the 

ionic conductivity and electrochemical properties of PVA based polymer electrolyte, 

doped with ammonium thiocyanate (NH4SCN):Cu(II)-complex and plasticized with 

various amount of glycerol (GLY). Then, the highest conducting sample will be used 

as polymer electrolyte in the fabrication of EDLC, and the performance of the device 

will be explored.  
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     Figure 1. Ragone plot of Ed versus Pd for numerous electrochemical energy storage devices [4].

2. Materials and Methods

2.1 Materials 

Sigma-Aldrich (Kuala Lumpur, Malaysia) provided poly(vinyl alcohol) (PVA) 

powder (average molecular weight = 85000-124000), copper(II) chloride (molecular 

weight = 134.45 g/mol) and GLY (molecular weight = 92.09382 g/mol). HmbG 
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chemicals, EMPLURA, and Timcal provided ammonium thiocyanate (NH4SCN) 

(molecular weight = 76.12 g/mol), N-Methyl-2-pyrrolidone (NMP) (molecular weight 

= 99.13 g/mol), and carbon black (molecular weight = 12.01 g/mol), respectively. 

Magna value delivered both of the polyvinylidene fluoride (PVdF) (average molecular 

weight = ~534,000 by GPC) and activated carbon (AC) (RP20) (molecular weight = 

12.01 g/mol). 

2.2 Electrolyte Preparation

One gram of PVA was dissolved in 40 mL of distilled water. The solution was 

stirred using magnetic stirrer at the temperature of 80 oC for around 60 min to prepare 

the PVA solution. The PVA solution was then left to cool down to room temperature. 

Then, fixed amount of 50 wt.% of NH4SCN were added to the PVA solutions and 

stirred constantly with magnetic stirrer at ambient temperature until the salt was fully 

dissolved in the PVA polymer solutions. Later, PVA:NH4SCN was included with 10 

mL of Cu(II)-complex (synthesis of Cu(II)-complex was described in our previous 

work in materials and methods section in ref. [29]. Subsequently, the solutions were 

mixed and stirred to obtain a good dispersion of Cu(II)-complex in the solution. After 

that, the PVA:NH4SCN:Cu(II)-complex were plasticized with 10, 20, 30, and 40 wt.% 

GLY and then the prepared samples were coded as PGNC-1, PGNC-2, PGNC-3, and 

PGNC-4, respectively. Finally, the plasticized solutions were stirred and mixed until a 

homogeneous solution was reached and then preserved in the plastic Petri dishes and 

left for drying at room temperature. For drying better, the fabricated CPE films were 

preserved in a dessicator comprising silica gel before characterisations.
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2.3 Characterization techniques 

X-Ray Diffraction (XRD) spectra were achieved through the use of Empyrean X-

ray diffractometer, (PANalytical, Netherland) with operating voltage of 40 × 103 V 

and operating current of 40 × 10-3 A. The CPE films were scanned with a CuKα X-ray 

monochromatic radiation at 0.15406 nm wavelength and the 2θ glancing angle was 

ranged from 10° to 80° with 0.1° step size.

To study the PVA film as well as CPE films, Fourier Transform Infrared (FTIR) 

spectrophotometer (Thermo Scientific, Nicolet iS10) was used in the wavenumber 

range from 4000 to 450 cm−1 and with having 2 cm−1 resolutions. 

A Hitachi SU8220 was used to conduct the field emission scanning electron 

microscopy (FESEM) at 500× magnification. FESEM images were taken to consider 

the CPE films morphology.   

The pure PVA and CPE impedance spectra were accomplished using 

electrochemical impedance spectroscopy (EIS) [3532-50 LCR HiTESTER (HIOKI)] 

in the frequencies between 50 Hz and 5× 106 Hz. The synthesized CPE films were cut 

for circles with 20 mm in diameter as well as located between stainless steel (SS) 

electrodes under pressure of a spring. The CPE samples were linked to a computer 

program to consider real (Z') and imaginary (Z") parts of the complex impedance (Z*) 

spectra. 

2.4 Electrolyte Characterization

2.4.1 Ionic transference number Analysis

Two types transference number (TNM) were analyzed, which are ionic (tion) and 

electronic (tel) TNM. The cell preparation arrangement was SS| highest CPE (PGNC-

4)| SS. The cell was connected to a V&A Instrument DP3003 digital DC power 
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supply and a UNI-T UT803 multimeter. The circuit diagram for the TNM 

measurement is shown in Figure 2. The cell polarized versus time at the working 

voltage of 0.2 V and ambient temperature. tion and tel can be calculated from Eq.s (1) 

and (2) [31]:

  
                                                                                                   (1)

i

ssi
ion I

IIt 


                                                                                                        (2)ionel tt  1

Here initial current and steady-state current are designated as Ii and Iss, 

correspondingly. 

-+

SS Blocking Electrodes

Electrolyte film

Ammeter

Switch

DC Voltage Source

To the recorder

A

Figure 2. Illustration of TNM experimental system.

2.4.2 Linear sweep voltammetry (LSV)

In order to check the electrochemical stability of the prepared CPEs before the 

EDLC fabrication, the linear sweep voltammetry (LSV) investigation was 

accomplished. The cell arrangement for the LSV is similar to the TNM examination 
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in Figure 2. Scan rate of 10 mV s-1 was given from 0 to 2.5 V at ambient temperature. 

The cell was linked to the working electrode, reference electrode, and counter 

electrode by means of Digi-IVY DY2300 potentiostat. When potential was swept 

linearly between working electrode and counter electrode, the change in the current 

value at the working electrode was recorded. The cell setup for the LSV test is 

displayed in Figure 2.

2.5 EDLC Fabrication

Planetary ball miller (XQM-0.4) was employed to mix the 0.25 g of carbon black 

and 3.25 g of activated carbon (AC) at 500 rpm for around 20 minutes. Six metal balls 

were incorporated to a chamber together with the above powders. Then, 0.5 g of 

polyvinylidene fluoride (PVdF) was inserted in the solvent of 15 mL N-methyl 

pyrrolidone (NMP) and then stirred for around 60 minutes. The powders were 

transferred into the PVdF-NMP solution and then stirred for 2 hours till the 

emergence of homogenous solution of dense black. An aluminum foil was cleaned 

using acetone and finally the synthesized homogenous solution was coated on it by 

using a doctor blade. Subsequently, the gained AC electrodes were dried-out in an 

oven at 60 °C with the mass loading of active material of 2.43 mg. Finally, the dried 

AC electrodes were kept in a dessicator with silica gel for drying better. The formed 

electrodes were cut into circles with area of 2.01 cm2. The mass of electrode minus 

with the mass of aluminum foil was 2.99 mg. From the mass mentioned earlier, AC 

was 81.25% from the total mass of each circle electrode. Hence, the mass of AC was 

2.43 mg and was to calculate EDLC parameters because AC is the active mass.
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2.6 EDLC Characterization

The AC electrodes were cut into circles with area of 2.01 cm2. The utmost 

conducting PE (PGNC-4) was set in between two AC electrodes and laid in a CR2032 

coin cell. Finally, the coin cell was located in a Teflon case as exhibited in Figure 3.

                                     

Teflon case

Coin cell
top

AC Electrode

Coin cell
bottom

Electrolyte

Stainless steel

Figure 3. Design of the synthesized EDLC.

The cyclic voltammetry (CV) of the EDLC was taken with Digi-IVY DY2300 

potentiostat. The applied potential was in the range between 0 V and 0.9 V with 

various scan rates. The EDLC displayed in Figure 3 was exposed with several scan 

rates of 5, 10, 20, 50, and 100 mV s−1. The specific capacitance CCV of the EDLC at 

the several scan rates can be developed from the CV profile through the following 

relation [32]:

                                                                                        (3) 
  

 f

i

V

V
if

CV VVmv
dVVIC

2

The CV plot area (∫ ) can be acquired using function of integration in Origin  dVVI

9.0 software.  refers the scan rate, m refers the mass of activated carbon (2.43 mg), v

Vf and Vi are the final voltage of 0.9 V and the initial voltage of 0 V, respectively. The 
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EDLC rechargeability is checked via NEWARE battery cycler for 1000 cycles at a 

current density of 0.5 mA cm-2 or 0.33 mAg-1. The surroundings for analysis the CV 

and EDLC charge-discharge was settled at ~25 °C and relative humidity of ~50%. The 

specific capacitance (Cd) using discharge curve can be found from Eq.(4) [32]:

  
                                                                                                                (4)

xm
iCd 

Here i and x denote applied current and gradient of discharge part, respectively. The 

CCV and Cd values of the EDLC were compared so as to check the confidence of the 

results. The situation of the contact between the electrode and CPE of the EDLC 

device was validated by means of the following equation [32]:

  
                                                                                                             (5)

i
VESR d

Where ESR denotes equivalent series resistance and Vd denotes potential drop before 

discharging process. 

3 Results and discussion 

3.1 XRD Examination

The XRD pattern of pure PVA and PVA:NH4SCN:Cu(II)-complex:GLY are 

displayed in Figure 4. A couple of peaks at nearly 2θ = 20◦ and 40◦ in the XRD 

spectrum of pure PVA are noted, which have been related to the crystalline structure 

of PVA in previous investigations [33, 34]. It is clear that these peaks still exist in the 

XRD spectra of PVA:NH4SCN:Cu(II)-complex:GLY even though their intensities 

were considerably decreased. More explicitly, the peak at 2θ = 40◦ almost 

disappeared, whereas the peak at 2θ = 20◦ widened. The extension of the amorphous 
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nature is ascribed in the wideness increase and fall in the peak intensity at 2θ = 20◦ 

[35, 36].

The doping of salt to the host polymer is probable to raise the structure of 

amorphous nature in PE. In an earlier research, the XRD pattern of starch-

chitosan:NH4Cl SPE system showed a clear increase in the crystalline peaks with 

emerging additional crystalline peaks at maximum salt concentration [28]. This 

outcome designated the salt recrystallization and ions recombination, which resulted 

in the decrement of free ions density, and therefore declined the σDC [28]. Different 

approaches were specified to overcome these challenges. One of the approaches is the 

addition of Cu(II)–complex to the PE in order to develop the amorphous structure and 

increase the σDC. The addition of GLY to the electrolyte was also attempted to further 

improve the σDC. The amorphous structure in the electrolyte complexes can be 

enhanced with the inclusion of GLY [37]. The existence of GLY in the complex 

systems helps salt dissociation, which in turn restricts salt recrystallization. Moreover, 

the plasticizer can produce different pathways for ions conduction; therefore, assisting 

the polymers to accommodate more salt. These processes raise the amorphous phase 

in the PEs, subsequently enhancing the electrolyte σDC [28]. The ion conduction is 

desirable in the amorphous structure owing to segmental movement of polymer chains 

[38, 39]. Moreover, the absence of any XRD peaks associated with pure PVA, 

approves the whole dissociation of NH4SCN salt in the PE [38]. The elimination of 

hydrogen bonding among the polymer chains causes broadening and weakening in 

intensity, which signifies the dominance of the amorphous phase in the PE system 

[33].

The addition of GLY and Cu(II)–complex will result in the intensity reduction 

of crystalline peaks and vanishes the crystalline peak at 2θ = 20° (see Figure 4). In 
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our previous work, it was shown that when Cu(II)-complex was added to the PVA 

host polymer, the amorphous nature expanded, which was noted as a decrease in the 

intensity of the XRD spectra [29]. The Cu(II)-complex XRD pattern in our earlier 

work indicated that the prepared Cu(II)-complex is nearly amorphous, thus the 

crystalline peaks cannot be perceived through the whole range of 2θ degrees. 

Obviously, just a hump can be seen from 2θ = 20◦ to 30◦ [29]. The XRD analysis 

results approve that a good complexation took place between the PVA and the 

electrolyte components.

The deconvolution technique for the XRD spectra was used to determine the 

potential amorphous peaks and the crystalline peaks and it was also used to determine 

the degree of crystallinity (Xc) [39], as shown in Figure 4. The large and wide peaks 

signify the amorphous peaks, while the narrow, sharp and small peaks indicate the 

crystalline peaks. Pure PVA possesses Xc of 41.68, which is noticeably decreased 

when GLY is inserted. Thus, the amorphous structure of the systems is enhanced with 

the GLY insertion. It is seen in Figure 4 that when GLY is added, crystalline peaks in 

PGNC-1 became smaller and less sharp (Figure 4 (c-e)). The addition of GLY with 

40 wt.% gives rise to the smaller crystalline peaks, as seen in the XRD pattern of 

PGNC-4 (Figure 4(e)). Eq. (6) was used to obtain Xc for pure PVA and doped PVA 

and the Xc values are tabulated in Table 1. PGNC-1 system has Xc value of 8.93 

while PGNC-4 has the minimum Xc value of 3.54, meaning that the PGNC-4 is the 

highest amorphous system in this study [39]. 

                                                            (6)  %100
T

C

A
AXc
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Here, AT and AC refer the total area of the amorphous and crystalline peaks and total 

area of the crystalline peaks, respectively, which were accomplished by the 

deconvolution method using the OriginPro software. The Gaussian function mode 

was employed for the fitting of the XRD spectra.

Figure 4. XRD spectra for (a) pure PVA, (b) PGNC-1, (c) PGNC-2, (d) PGNC-3, and (e) PGNC-4 
films.
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Table 1. The degree of crystallinity from deconvoluted XRD analysis

Electrolyte Degree of crystallinity 
(%)

Pure PVA 41.68

PGNC-1 8.93

PGNC-2 7.54

PGNC-3 5.88

PGNC-4 3.54

3.2 FTIR Analysis

The FTIR spectra for pure PVA and PVA:NH4SCN:Cu(II)-complex:GLY are 

shown in Figure 5. The following modifications in the spectral features have been 

detected after comparing the spectra of pure and doped PVA. C–H rocking of pure 

PVA is considered the reason for absorption peak at 838 cm−1 (see Figure 5a,) [33]. 

In the case of PVA:NH4SCN:Cu(II)-complex:GLY, this peak shifted and its intensity 

decreased; whereas, upon the addition of 40 wt.% of GLY it nearly vanished. 

It is well-known that in NH4SCN salt–polymer, the charge carrier species are 

hydrogen ions (H+) [24]. The new strong and intense peak detected at 2045 cm-1 is 

endorsed to aromatic S–C=N stretching of anion of SCN- group of NH4SCN. This 

band shifts with considerable intensity reduction upon the addition of the higher GLY 

concentration is related to the complexation with PVA functional groups (see Figure 
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5b) [34, 38]. In the ammonium ion NH4
+ tetrahedral, since just one of the four protons 

(H+) weakly linked to the nitrogen atom; thus, the H+ will transfer to every 

coordinating site of PVA. The change in peak place with the emergence of the new 

peak in the PVA:NH4SCN:Cu(II)-complex:GLY indicates the complex creation 

amongst the PVA and the NH4SCN [34]. The insertion of plasticizer helps further 

ions dissociation; therefore, additional ions are offered to create interactions with the 

functional groups of PVA [40]. Furthermore, the interaction between PVA functional 

groups and Cu(II)–complex was indicated in our previous work [29]. This interaction 

or the adsorption of Cu(II)–complex on the functional groups of the PVA is the two 

endorsed clarifications for the band intensity reduction [29]. Consequently, since 

adsorption causes an increase in the molecular weight, there is a reduction in the 

functional groups vibrational intensity [35].

In the meantime, O–H stretching vibration of hydroxyl (OH) groups can be 

related with the wide and robust absorption peak at 3340 cm−1 [41]. This band 

possesses a high intensity, almost certainly owing to the robust intra and inters kinds 

of hydrogen bonding [33]. Additionally, this band shifts and peak intensity drops in 

the PVA:NH4SCN:Cu(II)-complex:GLY owing to its complexation with NH4SCN 

salt and Cu(II)-complex. The peak at around 1643 cm−1 in the pure PVA is believed to 

be originated from the C=O stretching of acetate group [42], in which for the doped 

PVA films it is shifted to a smaller wavenumber. C–H asymmetric stretching 

vibration is related with a band at 2913 cm−1 [41], which also shifted and reduced 

considerably in the case of doped PVA films. Furthermore, the characteristic of –C–

O– stretching vibration in pure PVA is ascribed through the peak at 1076 cm−1 [43], 

which is shifted with dropped intensity in the doped films with Cu(II)-complex and 

GLY, as shown in Figure 5a. 
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The C–H bending vibration of CH2 wagging has been recognized as the cause 

for the pure PVA absorption peak at 1419 cm−1, while C–H deformation vibration has 

been related with the 1317 cm−1 absorption peak in pure PVA (see Figure 5a,) [42]. It 

is therefore clear that the PVA:NH4SCN:Cu(II)-complex:GLY samples were related 

with shifting of these two peaks and a considerable reduction in the intensity of these 

peaks. These modifications in the FTIR spectra are strong evidences for the 

interaction of PVA functional groups with the electrolyte components (see Figure 5a, 

b).
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Figure 5. Spectra of FTIR for (i) pure PVA, (ii) PGNC-1, (iii) PGNC-2, (iv) PGNC-3, and (v) 

PGNC-4 in the range (a) 450 cm−1 to 1900 cm−1, and (b) 1900 cm−1 to 4000 cm−1.

3.3 Morphological Study

Figure 6a(i-iv) illustrates surface morphology of all the studied films through 

FESEM images. It is recognized that the surface morphology of the PE films is the 
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key properties to recognize their behavior [44]. The images were obtained at 

500× magnification. The small grey lumps can be seen on the surface of the CPE 

films (see Figure 6a(i)). These lumps were attributed to the protrude salts. It is 

evident from the images that the grey lumps are disappeared as the GLY 

concentration was increased from 20 to 40 wt.%. The CPE has a smooth and uniform 

surface morphology without existing a phase separation as shown in Figure 6a(ii-iv). 

It is well documented that smooth morphology appearance is related to the amorphous 

phase of the PE system [45]. The smooth surface electrolytes can assist conducting 

ionic species to pass more easily, and therefore increases the value of σDC [45]. 

Likewise, the CPE samples with uniform surface in Figure 6a(ii-iv) indicates the fine 

dispersion of Cu(II)-complex. The small white spots appearing on the CPE films 

surface are attributed to Cu(II)-complex.  

This was though, certified to be different in previous works, while extra 

agglomerated particles on the surface of the CPE films appeared as excessive fillers 

was included in the polymers. For examples, Hamsan et al. [46] determined the σDC 

decrement as more GLY was inserted. It has been explained that this is ascribed to the 

rearrangement of self-linkages of plasticizer producing recrystallization of salt which 

causes a decrease in σDC [47]. Hence, polymer capability is restricted to accommodate 

extra salts, which in turn caused recrystallization of salt [48]. Lim et al. [1] have also 

connected the surface morphology of CPEs to the σDC. In their work, a fall in σDC 

upon addition of 10 wt.% TiO2 has been shown for PVA:LiClO4:TiO2 electrolyte 

systems. They proposed that this observation is due to the agglomeration of TiO2. 

They related this to the fact that, the CPE surface morphology possesses great level of 

rigidity owing to the addition of 10 wt.% TiO2. Thus, these agglomerations could 

block conducting pathways for ionic movements. Large rigidity in the back bone of 
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polymer also decreases the ion mobility. Consequently, the σDC is reduced with the 

blocking impact and ion transportation is limited. 

It is believed that so as to accomplish high σDC, the surface has to be smooth 

uniform. In other words, it is linked to the film amorphous structure [49]. The 

addition of Cu(II)-complex improved the amorphous phase further as shown in our 

previous work [29]. In fact, the interaction between the PVA and electrolyte’s 

components is evinced by the smooth uniform surface morphology of the CPE 

samples (see Figure 6a(i-iv)).

In this study, the outcomes display that there is an innovation of the PE 

preparation as a novel and simple technique to get a great σDC and high performing 

EDLC. The FESEM images are in good agreement with the XRD and FTIR results. 

From the XRD and FTIR routes, the interaction among the PVA and electrolyte’s 

components were validated. It is indicated that the CPE surface morphology is 

observed to be nearly smooth and uniform without having obvious protruded salts at 

high GLY concentration. From these outcomes, the fabricated CPE was well-defined 

with amorphous behavior even at the maximum GLY amount. The role of GYL 

content on increasing free ionic species in the prepared samples is schematically 

illustrated in Figure 6b.
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3.5 Impedance Analysis

         The electrochemical and ion transference behaviors of ionic materials, for 

example electrodes and PEs, can be efficiently examined by the use of 

electrochemical impedance spectroscopy (EIS) [50, 51]. In this work, EIS was used to 

analyze the impedance plots for the CPE films (see Figure 7(a-d)). For PGNC-1 

system in Figure 7a, a semicircle at high frequency region is resulted from the CPEs 

bulk effect, and a tail at low frequencies can be noted. The tail at the low frequencies 

happens because of the creation of the EDLC through the free charges buildup at the 

electrode and electrolyte interface [52]. The spike or tail was only displayed by the 

other samples (see Figure 7(b-d)). 

            The electrical equivalent circuit (EEC) method is used as a straightforward 

way for the EIS examination, which provides the entire image of electrolyte system 

[53]. The Nyquist plot for the systems was deduced in terms of the EEC. It comprises 

bulk resistance (Rb) for the carriers in the electrolyte systems and two constant phase 

elements (CPE) as seen in the insert of Figure 7. The region of high frequencies 

displays the connection of Rb and constant phase element in parallel, while the region 

of low frequencies indicates only constant phase element, meaning that the formed 

EDLC between electrode and electrolyte. The constant phase elements term is more 

usually employed in EEC rather than ideal capacitor in the real system. 

The impedance of ZCPE can be written as [46,54]:
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Where C stands for the constant phase element capacitance, ω refers the angular 

frequency and p is linked to the departure of the EIS plots from the vertical axis. Here, 
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the real (Zr) and imaginary (Zi) parts of complex impedance (Z*) correlated with the 

EEC (insert of Figure 7a) are indicated as [54]:
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Where C1 refers the bulk constant phase element capacitance and C2 refers the 

constant phase element capacitance at the interface of electrode and electrolyte.  

Here, the Zr and Zi parts of Z* associated with the EEC (inset of Figure 7b-d) are 

expressed as [54]:
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Table 2 outlines the fitting parameters of the EEC. The Rb is obtained by the 

interception between the real axis and the spike. It is obvious that upon the addition of 

the GLY, the semicircle at the region of high frequencies were absent (see Figure 7b-

d) due to the complete transport of ions toward the electrodes. The Rb is dropped as 

the GLY amount increases to 40 wt% because of the increase in mobility of charge 

species, ensuring the rise in the σDC of ions. The increase in σDC with the GLY amount 

is consistent with the FESEM results (see Figure 6). The addition of Cu(II)–complex 

https://www.nature.com/articles/s41598-018-32662-1#Fig1
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to the PE significantly promoted the amorphous nature that caused to increase the σDC 

and improve the EDLC performing. Rangasamy et al., [55] thought that the increase 

in the amorphous phase of the PE increases the ions mobility by developing more free 

volume in the PE system. This leads to an increase in the polymer chains segmental 

motion, due to the rise in the polymer chains flexibility. Therefore, the σDC in the PE 

can be improved. Liew [56] had developed the CPE based on PAA:LiTFSI with the 

insertion of BaTiO3. The author obtained σDC of 5 × 10–4 S cm–1 and used the CPE in 

the EDLC cells. This indicates that CPE is a good candidate to be employed as a PE 

in the EDLC device. By considering the Rb value and the CPE dimensions, the σDC of 

the CPE films can be calculated using the relation below [57],

                                                                                            (12)






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
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
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Where t denotes the CPE thickness. A refers to the area of the SS electrode. The 

values of σDC of the CPE samples are listed in Table 3. Previous reports have 

indicated that PEs with high σDC in the range between 10-5- 10-3 S cm-1 can be 

employed for use in EDLCs (see Table 4). The σDC value of the synthesized EDLC is 

in comparison with previous works using a number of PEs as recorded in Table 4. 

The idea of σDC value was supported in the sense that the σDC depends on the charge 

number density (ni) as well as ionic mobility (µi), as follows [58],

                                                                                                 (13)
i

iiidc qn 

Here qi stands for the charge of the species (1.6 × 10−19 C). There was an increase in 

σDC when ni and µi inside the system of PE increases, as it is apparent from Eq. (13). 

The Table 3 data as well as EIS spectra in Figure 7 obviously indicate that having 

more GLY concentration will give rise to the value of σDC. GLY decreases the 
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attraction force between the cations and anions of the salt [27, 28]. Thus, a greater 

number of ammonium ions (ni) is offered by NH4SCN to the polymer.

Table 2. The fitting parameters of the EEC for CPEs system at room temperature. 

Table 3. Achieved σDC of the PVA:NH4SCN:Cu(II)-complex:GLY system at room temperature.

Sample  P1 (rad) P2 (rad) K1 (F-1) K2 (F-1) C1 (F) C2 (F)
PGNC-1 0.814768 0.383195 1.20×109 9.20×104 8.33×10-10 1.09×10-5

PGNC-2 - 0.668364 - 8.60×104 - 1.16×10-5

PGNC-3 - 0.706885 - 3.20×104 - 3.13×10-5

PGNC-3 - 0.681095 - 2.27×104 - 4.41×10-5

Designation Composition (PVA wt.%:NH4SCN 
wt.%:Cu(II)–complex mL:GLY wt.%:) Rb (Ohm) σDC (S cm-1)

PGNC-1 50:50:10:10 2.28 × 104
5.23 × 10-7

PGNC-2 50:50:10:20 50 3.24 × 10-4

PGNC-3 50:50:10:30 12 1.46 × 10-3

PGNC-4 50:50:10:40 11 2.25 × 10-3
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Figure 7. Experimental EIS for (a) PGNC-1, (b) PGNC-2, (c) PGNC-3, and (d) PGNC-4 
electrolyte films.

Table 4. DC conductivity (σDC) specific capacitance (Cd), energy density (Ed), power density (Pd), 
and cycle number of EDLCs using dissimilar PEs at room temperature.
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Where; LiClO4 = Lithium perchlorate, TiO2 = Titanium dioxide, CMC = Carboxymethyl 
cellulose, KC = kappa carrageenan, NH4NO3 = Ammonium nitrate, Al2SiO5 = Aluminium 
silicate, PAA = Poly(acrylic acid), LiTFS = lithium bis(trifluoromethanesulfonyl)imide, BaTiO3 = 
barium titanate, PS = Potato starch, MC = methylcellulose, EC = ethylene carbonate, 
CH3COONH4 = Ammonium acetate, BmImBr = 1-butyl-3-methylimidazolium bromide, PEG = 
poly (ethylene glycol), EMI-TFSI= 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfoly) 
amide, PVdF= poly(vinylidene fluoride), HFP= hexafluoropropylene, PDMA= poly (N, N-
dimethylacrylamide), MgTf2= Magnesium trifluoromethanesulfonate, Co3O4= Cobalt oxide, 
Naft= sodium trifluoromethanesulfonate, BmImBr= 1-butyl-3-methylimidazolium bromide, 
NH4F= Ammonium fluoride.

3.6 EDLC Characteristics

3.6.1 Transference Number Measurement (TNM)

TNM is employed to identify the highest carrier species inside the CPE. When 0.2 

V is applied, the current commences to decrease until it gets saturation. The current 

Electrolyte composition σDC (S cm-1) Cd (F g−1) Ed (Wh kg−1) Pd (W kg−1) Cycle 
No. Ref.

PVA:LiClO4:TiO2 1.3 × 10-4 12.5 1.56 198.7 1000 [1]

CMC:KC:NH4NO3 ~10-4 20 - - 10000 [59]

Chitosan:H3PO4:NH4NO3:Al2SiO5 (1.82 ± 0.1) × 10-4 0.2 - - 100 [60]

PAA:LiTFS:BaTiO3 5 × 10–4 34.22 3.32 71.47 20000 [56]

PDMA: MgTf2: Co3O4 9.4 × 10–3 29.48 1.89-2.62 157.7-240.4 8000 [19]

Dextran:NH4Br (1.67 ± 0.36) × 10−6 2.05 - - 100 [61]

PS:MC:NH4NO3:GLY ~10−3 31 3.1 910-385 1000 [46]

PVA:chitosan:NH4NO3:EC 1.6 × 10-3 27.1 - - 100 [62]

MC:NH4Br:GLY (1.89 ± 0.05) × 10−4 - - - - [49]

Chitosan:MC:NH4I 6.65× 10−4 9.97 1.1 578.55 100 [14]

PVA:Naft:BmImBr 2.31× 10−3 16.32 - - 1000 [17]

Chitosan:MC:NH4F 2.96 × 10-3 58.3 7.3 964 100 [18]

PVA:CH3COONH4:BmImBr (9.29 ± 0.01) × 10−3 21.89 1.36 34.66 500 [63]

PVA:dextran:NH4I 2.08 × 10−5 4.2 0.55 64 100 [64]

MC:NH4NO3:PEG 38 3.9 140 100 [65]

MC:dextran:NH4I 1.12 × 10−3 79 8.81 1111.1–170 100 [66]

Cellulose acetate:LiClO4 4.9  × 10−3 90 - - 600 [67]

EMIM-TFSI:PVDF-HFP - 51.8 15.7 1048 3000 [68]

PVA:NH4SCN:Cu-complex:Gly 2.25 × 10-3 155.32 17.473 4960 1000 This 
work
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polarization set against time for the maximum conducting CPE (PGNC-4) is 

portrayed in Figure 8. The cause for the enormous of the early current value is in 

consequence of the part held by the ion and the electron carriers at the early stage. 

Figure 8 illustrates that there is a substantial reduction in the current prior it reached 

an equilibrium state. Once the CPE was polarized, it is in the equilibrium; whereas, 

the maintained current movement is owing to electron species. The cause for that is 

the blocking of ions caused by the SS electrodes, which lets only the electron to 

transport through it [69]. Eqs. (1) and (2) are employed to evaluate tion and tel values, 

which obtaining Ii and Iss values as 279.9 µA and 8.1µA, respectively. The tion and tel 

values are established to be 0.971 and 0.029, respectively. It is interesting to note that 

the tion is very close to the ideal value of one. Subsequently, it is concluded that ions 

have a significant role in the transportation mechanism in the PVA:NH4SCN:Cu(II)–

complex:GLY system.
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Figure 8. Polarization current versus time for the maximum conducting (PGNC-4) CPE film.

3.6.2 Electrochemical Stability Study
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The electrochemical stability window (ESW) is an essential characteristic to be 

studied [70]. Hence, linear sweep voltammetry (LSV) measurement is led to find the 

PE decomposition voltage. The device performance is verified when one is alert of the 

ESW of the PE film prior the test of charge-discharge cycles. To avoid causing any 

harm to the PE, the decomposition voltage is vital. Figure 9 depicts the LSV plot of 

PGNC-4 at 10 mV s−1 with a voltage range of 0 to 2.5 V. There is no obvious change 

in the current within the working electrode in the voltage varying from 0 to 2.15 V. 

ESW is observed at 2.15 V as the current starts to raise drastically, revealing CPE 

decomposition.

This outcome is similar to the work by Liew [56] on PAA:LiTFSI:BaTiO3 CPE 

with ESW of 2.3 V. They employed the CPE in an EDLC. Kadir & Arof [62] reported 

that the ESW for PVA-chitosan-NH4NO3-EC film is 1.70 V, which is lesser than the 

obtained result in our work. The usual ESW for protonic battery use is approximately 

1 V [71]. Therefore, the decomposition voltage of PGNC-4 highlights its suitability 

for applications in protonic devices. Lim et al. [1] documented that the decomposition 

voltage of PVA:LiClO4:TiO2 was found to be 2.4 V and they used the CPE in an 

EDLC.

https://www.powerthesaurus.org/varying_from/synonyms
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Figure 9. LSV plot for the maximum conducting (PGNC-4) CPE film.

3.6.3 Cyclic Voltammetry Study

Cyclic Voltammetry (CV) examination was employed to assess the performance 

of EDLC using PGNC-4 CPE. Figure 10 shows the CV plot of EDLC at various scan 

rates of 5, 10, 20, 50, and 100 mV s−1. No peak is seen in the CV plot signifying that 

no redox reaction happens at the potential range of 0 to 0.9 V. This is verified the 

existence of EDLCs [72]. As seen in Figure10, the CV plot shape deviated from a 

leaf shape to a nearby shape of a rectangle when the scan rate decreases. High scan 

rate causes a departure of the CV plot from rectangular shape that is ascribed to the 

internal resistance and carbon porosity; hence, generating a current-voltage 

dependence [62]. The values of CCV will be derived from the profile of CV with Eq. 

(3) and are presented in Table 5 at different scan rates of 5, 10, 20, 50, and 100 mV 

s−1. The value of CCV increases as the scan rate drops. Ions use the whole vacant sites 

through the electrodes where ions have appropriate time for the mechanism of 

diffusion at short scan rates, causing in grander value of CCV [73]. The CV shapes 
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acquired in this work is similar to that achieved by Lim et al. [1]. In their study, the 

CV at the scan rates of 10, 30, 50, and 100 mV s-1 were created for EDLCs with the 

system of PVA:LiClO4:TiO2-based CPE.
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Figure 10. Cyclic voltammetry (CV) plot of the synthesized EDLC for the largest conducting 
(PGNC-4) CPE film.

Table 5. Capacitance values from CV as opposed to scan rates.

Scan rates (mv/s) Capacitance (F/g)
100 64.014
50 100.137
20 123.457
10 132.602
5 134.889

3.7 Galvanostatic charge-discharge analyses

Figure 11a displays the EDLC charge-discharge profile at initial cycles at 0.5 mA 

cm−2 current density. The roughly discharge curves with linear slope designates the 
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EDLC capacitive manners [73]. The charge-discharge plot of the EDLC at 0.5 mA 

cm-2 for the selected cycles up to 1000th cycles is exposed in Figure 11b, c. It could 

be seen that the discharge slope is still almost linear, signifying the presence of 

capacitive behavior of the EDLC [73]. Figure 11b,c displays the charge-discharge 

performance of the EDLC at specific cycles. At the beginning of charge-discharge 

process more ions are available to form double layer thus providing longer discharge 

time. As the cycle number increase, the discharge time become shorter, this is due to 

recombination of ion to form ion pairs or triplets. The development of ion pairs 

reduces the charge double-layer.
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Figure 11. Charge–discharge profiles for the synthesized EDLC at 0.5 mA cm−2 for (a) initial 
cycles, (b) selected cycles of 100th, 200th, 400th, 600th, 700th, and 1000th and (c) selected cycles 
of 100th, 500th, and 1000th. 

The value of Cd is computed by substitution the value of the slope of the discharge 

curves in Eq. (4). Figure 12 displays the Cd versus number of cycles. The Cd value 

calculated for the 1st cycle is 128.6 F g−1. This value is analogous to the CCV obtained 

from CV examination (see Table 5). Therefore, the Cd value accomplished from the 

EDLC in this study is responsible. The value of Cd was found to increase and stays 
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constant with the average of 155.32 F g−1 besides the 1st cycle till it finishes 1000 

cycles. Though, in previous documents significant decrease of Cd has been discerned 

with raising the number of cycles [1, 56]. The achieved Cd in this study is much 

higher than those stated in the literature using various PEs (see Table 4). 

The development of Cd in the EDLC is ascribed to the higher σDC value of the 

CPE due to the influence of the Cu(II)-complex on the enhancement of the amorphous 

structure [29], and the addition of GLY plasticizer [46]. As reported by Fan et al. [74], 

the development of the amorphous phase is to be beneficial in local chain segmental 

motion that can encourage the ions transportation and hence increasing the σDC. Thus, 

ions can transfer freely through the PE. Fast ion migration in the CPE also encourages 

the adsorption of ions at the interfaces of the electrodes and electrolytes that causes 

greater Cd value of EDLC [56].
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Figure 12. Cd of the synthesized EDLC for 1000 cycles.

The decrease in the voltage throughout the discharging process is caused by the 

EDLC internal resistance. The low drop voltage value, Vd, in this study denotes that 

less energy is dissipated during the charge-discharge process. The value of Vd is found 

by using Eq. (5) and displayed in Figure 13. It can be seen that the increase in the 
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value of Vd is still small throughout 1000 cycles, revealing the high performance of 

the fabricated EDLC. The EDLC internal resistance is attributed as equivalent series 

resistance (ESR). Therefore, a low ESR is crucial for the EDLC application. As 

documented by Arof et al. [75], the ESR in the EDLC is originated from the 

resistance of the current collectors, PE, and the space amongst the PE and the current 

collector. ESR is determined via Eq. (5), and the values are illustrated in Figure 14. A 

best contact among PEs and electrodes would be achieved because of low ESR, 

meaning that the migration of ions to the pores at the electrodes surface would be 

efficient [76]. Kumar & Bhat [77] documented that the increase in Vd  among the 

cycles of charge-discharge, which creates the increase in ESR is caused by the PE 

degradation in the EDLC. Fortunately, the increase in the ESR of the EDLC in the 

current work is still small within 1000 cycles. The ESR in the current study is much 

lower than the ESR values documented for other EDLC devices [59, 64].
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Figure 13. Vd pattern of the fabricated EDLC for 1000 cycles.
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Figure 14. ESR pattern of the created EDLC for 1000 cycles.

The energy density (Ed) and power density (Pd) of the EDLC device are achieved 

using the following equations [14]:

                                                                                             (14)
2
VC

E s
d 

                                                                                            (15)
)(4

2

ESRm
VPd 

Where V denotes the used voltage. 

From Figure 15, it can be perceived that the value of Ed using Eq. (14) for the 1st 

cycle is 14.467 Wh kg−1.The value of Ed exhibits an increase and continues constant 

with the average of 17.473 Wh kg−1 within the cycles beyond the 1st cycle up to 1000 

cycles. It means that the same energy barrier is subjected by ions species in migration 

to the surface of the AC electrodes for the processes of charge-discharge within 1000 

cycles. Though, in previous reports noticable decrease in Ed value were noted with 

increasing the cycle number [56, 63]. They described that the decrease in the value of 

Ed within the cycle number is ascribed to the raise in the ESR that creates the increase 

of energy loss through the mechanism of charge-discharge cycles [62, 78]. The 

accomplished Ed for the EDLC is sufficiently large compared to that described (3 
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Wh/kg) for PAA:LiTFSI:BaTiO3- based CPE [56]. The obtained Ed in the current 

study is of the considerable attention in respect of the Ed value of roughly 1.56 Wh/kg 

that found for EDLC of the CPE system of PVA:LiClO4:TiO2 [1]. Fortunately, the 

value of Ed (17.473 Wh kg−1) within 1000 cycles in the current work is in the range of 

battery energy density and significantly higher than the Ed values reported in the 

literature (see Table 4). These results indicate that the Cu(II)-complex as filler has a 

great impact on the performance of the EDLC device.
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Figure 15. Ed of the synthesized EDLC for 1000 cycles.

The achieved Pd value using Eq. (15) for our study will be seen in Figure 16. 

Over charge-discharge within 1000 cycles, the Pd value for the 1st cycle is 4960 W 

kg−1 and subjected to a drop up to 500th cycle with the average of 2277 W kg−1 and 

then continues constant with the average of 400 W kg−1 throughout the cycles beyond 

the 500th cycle. The drop of Pd at higher cycles is because of the depletion of the PE. 

Ion agglomeration after the fast charge-discharge mechanisms blocks the migration of 

ions to the electrodes that causes a decrease of adsorption of ions at the interfaces of 

the electrodes and PEs [79]. This tendency of Pd drop is in agreement with the rising 
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ESR tendency. The ESR raise at greater cycles due to the reduction in the mobile ion 

concentration and aggregation of ions after the swift processes of charge–discharge 

cycles offers smaller Pd at higher cycles [80]. The accomplished Pd for the EDLC cell 

is high in comparison to that reported in the literature (see Table 4).
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Figure 16. Pd of the developed EDLC for 1000 cycles.

4. Conclusion

PVA:NH4SCN:Cu(II)-complex:GLY -based CPE was efficiently fabricated using the 
solution casting process. The addition of Cu(II)-complex and GLY maximized the σDC 
up to 2.25×10-3 Scm−1. Outcome from the XRD route displayed that the highest 
glycerolized CPE exhibits the most amorphousity. Outcome from the XRD 
examination displayed that the utmost conducting plasticized system has the smallest 
degree of crystallinity and the XRD outcomes could also be associated to the trend in 
the degree of crystallinity with conductivity variation of the CPE sytems. Using the 
FTIR route, the interaction amongst PVA and the PE components was confirmed. The 
FESEM route revealed that the films surface morphology were smooth uniform at 
higher GLY concentration. TNM established that the dominant charge carriers were 
ions. The tion as well as tel for the utmost conducting CPE were determined to be 0.971 
and 0.029, respectively. LSV route displayed that the decomposition voltage for 
PGNC-4 system is at 2.15 V, suggesting its appropriateness in the EDLC application. 
Capacitive manner in the synthesized EDLC was confirmed by CV examination, as 
no redox peaks were perceived. CCV was revealed to be affected by the used scan 
rates. The Cd and Ed of the EDLC are almost constant throughout 1000 cycles with 
average values of 155.322 F/g and 17.473 Wh/Kg, respectively at a current density of 
0.5 mA/cm2. Fortunately, the Ed of the EDLC in the current work is in the range of 
battery energy density. The low value of ESR indicates that the EDLC has a proper 
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contact among the AC electrodes and the PEs. The EDLC has initial high Pd as 
4960.31 W/Kg.
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