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Abstract 

In this work, we introduce Rock-Paper-Scissors lattice model on Cayley tree of second order 

generated by Rock-Paper-Scissors game. In this strategic 2-player game, the rule is simple: rock 

beats scissors, scissors beat paper, and paper beats rock. A payoff matrix A of this game is a skew-

symmetric. It is known that quadratic stochastic operator generated by this matrix is non-ergodic 

transformation. The Hamiltonian of Rock-Paper-Scissors Lattice Model is defined by this skew-

symmetric payoff matrix A . In this paper, we discuss a connection between three fields of research: 

evolutionary games, quadratic stochastic operators, and lattice models of statistical physics. We prove 

that a phase diagram of the Rock-Paper-Scissors model consists of translation-invariant and periodic 

Gibbs measure with period 3. 
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INTRODUCTION 

Ising and Potts Models 
According to Kindermann and Snell (1980), the Ising model is 

formulated by considering infinite graph ( ),V =  , where V is a 

countable set of vertices or sites and  is a set of edges. In general, the 

Ising model have been studied on integer lattice dZ = , with 2d 

and on the Cayley tree ( ),V =  , and for these models the problem 

of phase transition solved, see for example (Baxter, 1982; Georgii, 

1988). 

Below, we consider a semi-infinite Cayley tree of second order 

( )2 ,V+ =  , i.e., an infinite graph without cycles with 3 edges issuing 

from each vector except for 0x which has only 2 edges, where V is the 

set of its vertices and  is the set of edges. 

Two vertices ,x y V are called nearest-neighbors if there exists 

and edge l connecting them, which is denoted by , .l x y=

At each vertex or site, there is a small dipole or spin which point at 

any given moment is in one of two positions, up or down. A 

configuration σ is defined as function  : 1,1σ V → = − , where 

( ) 1σ x = indicating a spin up and ( ) 1σ x = − a spin down. To each 

configuration σ an energy (Hamiltonian) ( )H σ is assigned by 

                        ( ) ( ) ( )
,

xy

x y

H σ J σ x σ y= − ,                      (1) 

which represents the energy caused by interaction of the spins. Here, 

xyJ signifies the interaction energy between neighboring spins. Using 

this model for the case xyJ J= , Ising tried to explain certain 

empirically observed facts about ferromagnetic materials. Ising made 

the simplifying assumption that only interactions between neighboring 

spins need be considered.  

The Potts model (Potts, 1952) was introduced as a generalization 

for the Ising model to more than two components and encompasses a 

number of problems in statistical physics (see for example, 

(Zakharevich, 1978)). The model is structured richly enough to 

illustrate almost every conceivable nuance of the subject. 

For the three-state Potts model with spin values in  1,2,3 = , the 

relevant Hamiltonian with nearest-neighbor interactions has the form  

                            ( ) ( ) ( )
,

σ x σ y
x y

H σ δ= − ,                                   (2) 

where J R is coupling constant and δ is the Kronecker symbol, that 

is  

( ) ( )

1 if ( ) ( )

0 otherwise.
σ x σ y

σ x σ y
δ

=
= 


In Minlos (2000), Minlos introduced the three-component model as 

follows. Assume  1 2 3, ,v v v = is the spin system and the Hamiltonian 

( )2H σ of the configuration σ , then 

                         ( ) ( ) ( )( )2

,x y

H σ J ε σ x σ y= −  .                         (3) 
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Here ( ),i j ijε v v ε= , , 1,2,3i j = is a symmetric matrix A of the third 

order. If  

1 0 0

0 1 0

0 0 1

A

 
 

=  
 
 

we have the Potts model. 

Rock-Paper-Scissors games  
During the last decades within game theory, evolutionary and 

dynamical aspects have exploded. Hofbauer and Sigmund’s book, 

“Evolutionary Games and Population Dynamics” (Hofbauer & 

Sigmund, 1998) can serve as a very good introduction to this theory. 

Zero-sum games and their evolutionary dynamics was studied by Akin 

and Losert (Akin & Losert, 1984) (see also (Hofbauer & Sigmund, 

1998) and references therein). We recall the definition of zero-sum 

games following (Akin & Losert, 1984) and show their connection with 

the Volterra dynamical systems. A two-player symmetric game consists 

of a finite set of strategies indexed by  1,...,m = and an m m

payoff matrix ( )ija . When an i player meets a j player their payoffs 

are ija and jia , respectively. In evolutionary game dynamics, it is 

supposed a large population is a vector in  : 0m m

ip p+ =  

where ip measures the subpopulation of i strategists. Therefore, the 

total population size is 
i

i

p p= . The associated distribution vector 

( )1x ,..., mx x= lies in the simplex 

( )1

1 2

1

x , ,..., :for any , 0 and 1
m

m m

m i i

i

S x x x R i x x−

=

 
= =   = 
 

 , where 

i
i

p
x

p
= , is the ratio of i strategists to the total population. Then the 

nonlinear operator 1 1: m mV S S− −→ with  

                        ( )
1

x 1
m

k ki ik
i

V x a x
=

 
= + 

 
 ,                                   (4) 

where ( )
1

m

ijA a= is a skew-symmetric matrix with 1ija  can be 

reinterpreted in terms of evolutionary games and in those forms it has 

a fair history (Akin & Losert, 1984; Hofbauer & Sigmund, 1998; Losert 

& Akin, 1983). The Hofbauer and Sigmund’s book (Hofbauer & 

Sigmund, 1998) reflects well the state of evolutionary games till 1998. 

Rock-Paper-Scissors is a three strategic 2-player game. According 

to game rules rock beats scissors, scissors beats paper and paper beats 

rock. For brevity, we rename these three strategies as follows 1 Rock=

; 2 Paper= ; 3 Scissors= . Then, corresponding payoff matrix has the 

form 

0 1 1

1 0 1

1 1 0

A

− 
 

= − 
 − 

. 

Volterra quadratic stochastic operators 

The nonlinear operator 1 1: m mV S S− −→ with  

                        ( )
1

x 1
m

k ki ik
i

V x a x
=

 
= + 

 
 ,                                   (5) 

where ( )
1

m

ijA a= is a skew-symmetric matrix with 1ija  is called 

Volterra quadratic stochastic operators (Ganikhodjaev, Ganikhodjaev, 

& Jamilov, 2015; Ganikhodjaev & Zanin, 2004; Hui & Xu, 2018; 

Kesten, 1970). Recall ergodic hypothesis for quadratic stochastic 

operators (Ulam, 1960).  

A qso V is called regular if for any initial point 1x mS − the limit  

                                               ( )( )lim x
n

n
V

→
,              (6) 

exists. 

A qso V is said to be ergodic if the limit  

                                             ( )
1

0

1
lim

n
k

n
k

V x
n

−

→
=

 ,              (7) 

exists for any 1x mS − . 

Note that a regular qso V is ergodic, but in generally from 

ergodicity does not follow regularity. On the basis of numerical 

calculations for special type of nonlinear transformations, namely, so-

called quadratic stochastic operators (Bernstein, 1924), Ulam 

conjectured  that the ergodic theorem holds for any quadratic stochastic 

operator V (Ulam, 1960). In 1977 Zakharevich proved that this 

conjecture is false in general (Zakharevich, 1978). He proved that the 

following quadratic stochastic operator  

                               

2

1 1 1 2

2

2 2 2 3

2

3 3 1 3

2 ,

,

2 ,

2

x x x x

x x x x

x x x x







= +

= +

= +

                              (8) 

generated by the matrix  

                                    

0 1 1

1 0 1

1 1 0

A

− 
 

= − 
 − 

                            (9) 

is non-ergodic transformation. 

As evolutionary games are crucial in studying the emergence of 

cooperation in a competing population (Hofbauer & Sigmund, 1998) 

and the Ising model is one of the best studied models in statistical 

physics (Christensen & Moloney, 2015), a connection between them 

would allow two fields to borrow ideas, techniques and results from 

each other. In Hui and Xu (2018), and Liu, Xu and Hui (2017) the 

authors established such mapping via arguments based on defailed 

balance. More on previous works on relating the games and opinion 

formation model to the Ising model can be found in Liu et al. (2017). 

In this paper, we discuss a connection between Paper-Rock-

Scissors game, three component Potts model, and non-ergodic Volterra 

quadratic stochastic operators. 

ROCK-PAPER-SCISSORS MODEL 

Let  1,2,3 = be the set of spins and 
2

+ be a semi-infinite 

Cayley tree of order 2, i.e. infinite graph without cycles with 3 edges 

issuing from each vertex except for 0x which has only 2 edges. The 

distance ( ), , ,d x y x y V on 
2

+ , is the number of edges in the shortest 

path from x to y . For a fixed 0x V we set  

( ) 0,nV x V d x x n=   , 

and nL denotes the set of edges in nV . We introduce RPS-model on 

2

+ with the following Hamiltonian  

                                    ( ) ( ) ( )
,

σ x σ y
x y L

H σ J a


= −  ,                             (10) 

where J R is coupling constant, ija A (9) and ,x y stands for 

nearest-neighbor vertices. Note that the matrix A (9) is skew-

symmetric, such that the considered model is differ than three-

component model from Minlos (2000).    
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In order to produce the recurrent equations we consider the relation 

of the partition on finite subset nV V  to the partition function on 

subset of 1nV − , where 1 2 1... ...n nV V V V +      a sequence of finite 

subsets such that 
1 nn
V V



=
= . Let ( )n

iZ  be a partition function on nV  

with the spin i  in the root 0x , 1,2,3i = . Let ( )expa βJ= . Following 

Kindermann and Snell (1980), one can produce the following recurrent 

equation  

                       

( 1) ( ) ( ) 1 ( ) 2

1 1 2 3

( 1) 1 ( ) ( ) ( ) 2

2 1 2 3

( 1) ( ) 1 ( ) ( ) 2

3 1 2 3

( ) ,

( ) ,

( ) .

n n n n

n n n n

n n n n

Z Z aZ a Z

Z a Z Z aZ

Z aZ a Z Z

+ −

+ −

+ −

= + +

= + +

= + +

                (11) 

Denote 
( ) ( )

( ) ( )1 2

( ) ( )

3 3

,
n n

n n

n n

Z Z
u v

Z Z
= = . 

Then, according to (11) we have the following dynamical system 

                               

2
( ) 2 ( )

( 1)

2 ( ) ( )

2
( ) ( ) 2

( 1)

2 ( ) ( )

1
,

.

n n
n

n n

n n
n

n n

au a v
u

a u v a

u av a
v

a u v a

+

+

 + +
=  

+ + 

 + +
=  

+ + 

                            (12) 

It is evident that behavior of the trajectory of this dynamical system 

describes limit Gibbs measure of the considered model, namely, 

attractive fixed point describes translation-invariant Gibbs measure and 

repelling fixed points describes periodic Gibbs measures. Below we 

investigate fixed points of dynamical system (12). Consider the 

following system of equations  

                              

2
2

2

2
2

2

1
,

,

au a v
u

a u v a

u av a
v

a u v a

 + +
=  

+ + 

 + +
=  

+ + 

                        (13) 

where 
( )lim n

n
u u

→
=  and 

( )lim n

n
v v

→
= . 

It is evident that 1u = ; 1v =  is the fixed point. Let us compute 

Jacobian   

2

2 2

, 2

2 2

2 ( 1) 2( 1)

1 1
(1,1)

2( 1) 2( 1)

1 1

u v

a a a
λ

a a a a
J

a a
λ

a a a a

 − −
− − 

+ + + + =
 − −

− − 
+ + + + 

. 

Then, corresponding characteristic polynomial has the following 

form  

                      
2 2

2

2 2

2( 1) 4( 1)
0

1 1

a a
λ λ

a a a a

− −
+ + =

+ + + +
,                 (14) 

with discriminant  

                            
2 2

2 2

12( 1) ( 1)

(1 )

a a

a a

− +
 = −

+ +
.                             (15) 

Thus, the eigenvalues are  

                     
2 2

1,2 2

( 1) 3( 1) ( 1)

(1 )

a i a a
λ

a a

− −  + −
=

+ +
,                 (16) 

with  

                                         
2

2

2

4( 1)
| |

(1 )

a
λ

a a

−
=

+ +
.                                  (17) 

Then | | 1λ   if 
3 5

0.382
2

a
−

   or 
3 5

2.618
2

a
+

  . Therefore, 

we have | | 1λ   for (0.382;2.618)a and respectively the fixed point 

( )1,1  is attractive, and if 0.382a   or 2.618a   then | | 1λ   and 

respectively the fixed point is repelling. 

Applying numerical methods, one can show that for 0.382a   or 

2.618a  , there exists a cycle of third order and all trajectories tend to 

this cycle except the stationary trajectory starting with fixed point. 

Thus, the main result of this paper is formulated as follows: 

 

Theorem: The phase diagram of Rock-Paper-Scissors model on Cayley 

tree of second order consists of translation-invariant Gibbs measure if 

0.9624β J   and periodic Gibbs measure with period 3 if 

0.9624βJ  −  or 0.9624βJ  .  

CONCLUSION 
 

It is shown that the matrix A (1.9) can be reinterpreted in terms of 

evolutionary games, namely Rock-Paper-Scissors game and also can be 

reinterpreted in terms of non-ergodic Volterra quadratic stochastic 

operator (1.8). It is introduced Rock-Paper-Scissors model on Cayley 

tree of second order generated by the same matrix A  and described its 

phase diagram. 
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