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This study investigates the performance of option-implied moments, realised from the model-free 

Bakshi-Kapadia-Madan (MFBKM) with an improvement using wavelet transform. So far, little 

attention has been paid in utilising continuous wavelet transform in denoising the option-implied 

moments, especially within the model-free hybrid framework. Thus, this study primarily seeks to 

outline the important steps involved in the continuous wavelet transform data-regenerating by 

assuming that the best fit among the values considered is the best fit model for all. The sample data 

extracted from Dow Jones Industrial Average index options data is empirically examined 

throughout this study. This study finds that the wavelet-denoised higher moments record smaller 

approximation error in most cases compared to the noisy higher moments. It is shown that wavelet 

transform improves both consistency and error approximation of the signal.  
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I. INTRODUCTION 
 

The use of wavelet transform in data analysis has amplified 

significantly in recent years. Wavelet transform is 

predominantly preferable in either data analysis, series 

modelling to time series forecasting due to its special 

extraction capability feature of multiresolution 

decomposition of analysis. According to Rioul and Vetterli 

(1991), wavelet transform enables a certain series to be 

decomposed into partition of series with different resolution. 

In other words, the authors can examine the data in various 

number of resolutions of structure. A series may consist of 

both coarse and fine structures. However, in most cases only 

coarse structure appeared and most study tends to disregard 

the fine structure, hence produce a biased analysis. The 

multiresolution element of wavelet transform ensures that a 

data series is smoothed out without destroying the series fine 

structure during the data denoising process. As a matter of 

fact, Shik Lee (2004) and Arino and Vidakovic (1995) in their 

study pointed out the superiority of wavelet transform in 

series modelling and forecasting. Similar claim was made 

by Hsieh, Hsiao and Yeh (2011), in which they highlighted 

that the wavelet transform is so powerful that it has been 

applied to many fields hitherto. Wavelet transform has 

undeniably become an interesting topic to be explored.  

To date, there are not many studies attempted to utilise 

the wavelet transforms, especially in the realm of option-

implied information. Somehow, it is not clear why the 

studies on wavelet transforms in financial derivatives are 

less available despite its multiple advantages. It comes 

with several advantages. First, wavelet transform is 

viewed to be appropriate with non-stationary data, in 

which mean, and autocorrelation of the signal varied over 

time. Relying on the fact that most of the financial time 

series data is non stationary, it was sufficiently 

highlighted the appropriateness of wavelet transform in 

this case. Secondly, this wavelet transform involves 

decomposition of signal. It decomposes the given signal 

into several other signals with different resolution levels. 

Using this process, the original time domain is preserved, 
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without obliterate any information that can lead to further 

noises. Yu, Kim and YH Song (2001) demonstrated that 

wavelet transforms involve reverse process, i.e. the inverse 

wavelet transform. In the process, the signal is reconstructed 

without being loosed. In fact, there are many areas of 

application in which researchers employ wavelet transform. 

The subsequent sections are developed as follows. A brief 

background of study is already provided in the first section. 

Previous related studies are reviewed in Section 2. Sampled 

data considered throughout this study is described in Section 

3. In Section 4, the authors detail the methodology involved 

in investigating the effect of wavelet transform on the 

sampled data. The empirical results are presented in Section 

5. Finally, the conclusion is drawn in Section 6.   

 

II. LITERATURE REVIEWS 
 

Many instruments have been proposed in denoising financial 

time series. In fact, there are many areas of application in 

which researchers employ wavelet transform. Even though 

the literature covers a wide variety of such available tools, 

study that employed the continuous wavelet transform is very 

uncommon. For that reason, the following literature reviews 

attempt to primarily focus on the wavelet transform as a 

whole. A number of comparative studies of wavelet transform 

with varies methodologies have been recorded; either based 

on the stand-alone wavelet transform function or its hybrid 

with other models.   

For instance, a study done by Sun and Meinl (2012) 

illustrated the denoising analysis imposed on high-frequency 

data of Germany equity market. They proposed Local Linear 

Scaling Approximation Algorithm (LLSA) which based on the 

Linear Maximal Overlap DWT or MODWT. Sun and Meinl 

(2012) concluded that with flexible settings, the proposed 

LLSA appears to be having superior performance in 

decomposing the pattern and noises. Sun, Chen and Yu 

(2015) modelled the volatility of the US equities returns by 

proposing a new wavelet-based methodology, i.e. Generalised 

Optimal Wavelet Decomposing Algorithm (GOWDA). They 

found that the GOWDA methodology tends to generate more 

accurate forecasts of volatility compared to the traditional 

methods.  A study by Renaud, Starck and Murtagh (2005) 

employed multiresolution prediction in capturing the time 

series. The approach which is analogous to Kalman filter is 

revealed to be superior in noise filtering and time series 

forecasting.  Similar studies were conducted by Cristi and 

Tummala (2000) and Hong, Cheng and Chui (1998). Pan 

et al. (1999), Bashir and El-Hawary (2000) and Lotrič 

(2004) proposed the wavelet transform based on a neural 

network. Wavelet transform with Multiscale 

AutoRegressive is employed by Daoudi, Frakt and Willsky 

(1999).  

A paper by Al Wadia and Tahir Ismail (2011) which 

studied the wavelet transforms in forecasting Amman 

stock market based on ARIMA model discovered an 

improved accuracy in the time series forecasting. Similar 

findings were sought by Alrumaih and Al-Fawzan (2002) 

in denoising and forecasting the Saudi stock index and 

Ababneh, Al Wadi and Ismail (2013) that based their 

study on Amman stock market. Few other studies have 

also considered the combination between the wavelet 

transform with ARIMA. Al Wadi, Hamarsheh and Alwadi  

(2013) utilised the Maximum Overlapping Discrete 

Wavelet Transform (MODWT) with the combination of 

ARIMA in modelling and forecasting the Amman stock 

market. Alwadi (2015) has further extended the work 

proposed by Ababneh et al. (2013) and demonstrated the 

noteworthy performance of using MODWT compared to 

another discrete wavelet transform, i.e. Haar and 

Daubechies. MODWT was also employed by Ismail, 

Audu and Tummala (2016) The study compared the 

forecasting performance produced by GARCH alone, in 

relative with the MODWT-GARCH methodology, which 

was claimed to produce a better forecast.  

In a later study, Alrumaih and Al-Fawzan (2002) 

considered three denoising technique, i.e. Haar, 

Daubechies and Biorthogonal wavelet on the Saudi stock 

index time series. They revealed that a superior 

performance can be achieved by using soft thresholding 

with white noise assumption. Agarwal et al. (2016) 

proposed a wavelet transform based mixed model and 

found the model to be better than the other three models, 

which are Haar, Daubechies and Biorthogonal. In fact, 

they highlighted that the most outperform wavelet is 

Daubechies wavelet of second order, which is similarly 

sought by Alrumaih and Al-Fawzan (2002). Few others 

have focused their studies on using the Haar and 
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Daubechies wavelets, such as Manchanda, Kumar, and 

Siddiqi (2007). Pan et al. (1999) and Soltani (2002) studied 

the wavelet transform using the traditional undecimated 

Haar transform. In another study, Jammazi and Aloui (2012) 

carried out a study on the UK, France and Japan stock 

markets using A’Trous Haar wavelet transform and Markov 

Switching Vector AutoRegressive (MSVAR) analysis. 

Somewhat resembling study was performed by Ismail, Karim 

and Alwadi (2011) which studied the Malaysian KLCI index. 

As a matter of fact, there are few other studies cited that 

revealed the superiority of the wavelet transform and its 

mixed models. However, none of the study has so far 

considered a continuous wavelet transform in denoising the 

option-implied moments using a model-free hybrid 

framework. Thereby, this study seeks to outline the 

important steps involved in a continuous wavelet transform 

data-regenerating by assuming that the best fit among the 

values considered is the best fit model for all. 

Realising that, this research differentiates itself from other 

existing literature by investigating the performance of higher 

order moments, realised from the model-free Bakshi-

Kapadia-Madan (MFBKM). This study intends to empirically 

investigate the index options data, specifically those that able 

to directly proxy the global index options market. For that 

reason, the Dow Jones Industrial Average (DJIA) index 

options data is utilised in this study. DJIA is the most cited 

and the most extensively accepted stock market index. This 

study generally focused on examining whether the use of 

wavelet transform in estimating higher moments allows for 

improvement in the pricing performance. 

 

III. DATA 
 

This paper utilises options on the Dow Jones Industrial Index 

(DJIA) traded daily on the Chicago Board Options Exchange 

(CBOE). The investigation includes all call and put options 

traded from January 2009 until December 2015. The DJIA 

index options comprise track 30-blue chipped-companies 

index and equity options within the US economy. 

 

IV. RESEARCH 
METHODOLOGY 

 

This study relies on two core strands of literature, i.e. Bakshi, 

Kapadia and Madan (2003) and Buss and Vilkov (2012). 

The approaches used in the two studies are mainly 

adopted in this research with several adjustments and 

modifications for a better MFBKM performance. In order 

to obtain the option-implied moments values, the authors 

adopt the same methodology as in Buss and Vilkov 

(2012), which is from the estimated moments of the 

market index return. The authors control the noise 

embedded in the MFBKM by considering a wavelet signal 

de-noiser. Eleven denoised signals are generated for both 

cases of call and put options for comparison purposes. 

The denoised signals are first compared against the 

original noisy data. The comparisons are to include 8 

other smoothing filters. The new signal realised from the 

best performed wavelet is assessed based on two criterias- 

the Signal-to-Noise Ratio (SNR) and Root-Mean-Square-

Error (RMSE).  

In addition to that, further analysis on the pricing errors 

between those generated from wavelet-improved data 

series against that of non-wavelet-improved data series 

are performed. The results are delivered in terms of 

RMSE, mean value of the relative pricing error (MRPE) 

and mean value of the absolute relative pricing error 

(MARPE). Finally, the wavelet-enhanced signal is 

assessed in approximating the model-free higher-order 

moments of MFBKM. The true values obtained from a 

normal distribution are set as a benchmark. The 

approximation errors are measured using both absolute 

and relative errors.  Primary steps involved in this study 

are highlighted in Figure 1. 

 

A. Wavelet Denoising 

 

The signals denoised using wavelet signal denoiser only 

consists of significant signals that have been cleaned or 

flattened. In view of comparisons, the performances of 11 

denoised wavelet signals are recorded with respect to both 

call and put options. The parameters are manipulated to 

include various combinations of wavelet family, denoising 

method, threshold rules as well as noise estimate level. 

The 11 denoised signals and their respective parameters 

are detailed in Table 1 and Table 2, for call and put 

options, particularly.  
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Figure 1. Research Methodology Flow 

 

The gNoise(n) depicts the denoised signals of call options, 

for n=1,…,11. In the same manner, fNoise(n) are the denoised 

signals of put options. Five wavelet families are considered in 

this study with a variant of finite family of wavelets. For 

instance, the Symlets wavelet ranges from Symlet 2, Symlet 3, 

Symlet 4, up to Symlet 8. The Daubechies wavelet ranges 

from Daubechies 1 until Daubechies 10. The range of values 

that can be taken by the different wavelet family are 

described in Table 4.1. The level represents the number of 

times the wavelet is decomposed and the number of 

vanishing moments.  

However, a different definition of level is applied to 

Fejer-Korovkin wavelet. The level in this type of family 

wavelet denotes the number of filter coefficients. All levels 

are designated as positive integers. The minimum level is 

1, whereas the maximum number of decomposition of each 

wavelet is floor (log_2〖(N))〗 . N is the number of 

samples in a data. 

There are six different denoising methods considered in 

this study – the Empirical Bayesian, Block James-Stein, 

Universal Threshold, Stein’s Unbiased Risk Estimate 

(SURE), False Discovery Rate (FDR), and Minimax 

Estimation. Each method specifies how the thresholds are 

denoised in the data. The Empirical Bayesian method 

based its assumption on the independency of prior 

distribution that can have on the measurements. This is 

provided by a mixture model. 

A rough estimate of the model weight is assessed by the 

measurements. Thus, this method is efficient for high-

sampled data. The threshold rule undermining the Block 

James-Stein method is rooted on finding the best block 

thresholding estimator size and threshold. Optimal global 

and local adaptivity are achieved concurrently from the 

block product (Cai, 2002). 

 

 

Table 1.  Denoised Signals and Respective Parameters for Call Options 

Denoised 

Signal 

Wavelet Family 
Level Denoising Method 

Q-

value 

Threshold 

Rule 

Noise Estimate 

Level Name No. 

gNoise1 Symlets 8 5 Empirical Bayesian - Soft Dependent 

gNoise2 Daubechies wavelets 10 5 Block James-Stein - James-Stein Independent 

gNoise3 Daubechies wavelets 10 6 Universal Threshold - Hard Dependent 

gNoise4 Fejer-Korovkin filters 22 4 Universal Threshold - Hard Dependent 

gNoise5 Biorthogonal wavelets 6.8 7 Stein's Unbiased Risk 

Estimate 

- Soft Dependent 

gNoise6 Coiflets 5 4 Universal Threshold - Soft Dependent 

gNoise7 Symlets 4 4 Empirical Bayesian - Soft Dependent 

gNoise8 Symlets 8 6 Block James-Stein - James-Stein Independent 

gNoise9 Fejer-Korovkin filters 22 4 Empirical Bayesian - Soft Dependent 

gNoise10 Biorthogonal wavelets 6.8 4 False Discovery Rate 0.05 Hard Dependent 

gNoise11 Coiflets 5 6 Minimax Estimation - Soft Dependent 

 

 

 

 

WAVELET 
TRANSFORMATION
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Table 2.  Denoised Signals and Respective Parameters for Put Options 

Denoised 

Signal 

Wavelet Family 
Level Denoising Method 

Q-

value 

Threshold 

Rule 

Noise Estimate 

Level Name No. 

fNoise1 Daubechies wavelets 10 4 Empirical Bayesian - Soft Dependent 

fNoise2 Daubechies wavelets 10 4 Universal Threshold - Soft Dependent 

fNoise3 Fejer-Korovkin filters 22 4 Universal Threshold - Soft Dependent 

fNoise4 Biorthogonal wavelets 6.8 4 Universal Threshold - Soft Dependent 

fNoise5 Coiflets 5 5 Universal Threshold - Soft Dependent 

fNoise6 Symlets 8 6 Universal Threshold - Soft Dependent 

fNoise7 Symlets 4 4 Empirical Bayesian - Soft Dependent 

fNoise8 Symlets 6 4 Block James-Stein - James-Stein Independent 

fNoise9 Fejer-Korovkin filters 22 5 Empirical Bayesian - Soft Dependent 

fNoise10 Biorthogonal wavelets 6.8 4 False Discovery Rate 0.05 Hard Dependent 

fNoise11 Coiflets 5 5 Minimax - Soft Dependent 

 

The threshold rule of the FDR method is built to manipulate 

false positive detections of the expected ratio into all 

positives. This method is handy for a less-densed sample data 

(Abramovich, Angelini & De Canditiis, 2007). Threshold of 

Minimax Estimation method is selected to return those that 

return a minimax performance. The performance is assessed 

based on mean square error.  In line with its name, the SURE 

method chooses threshold using Stein’s Unbiased Estimate of 

Risk. The approach is also known as a quadratic loss 

function. The threshold value is selected to return the 

threshold value with a minimum risk. Finally, the threshold 

from the Universal Threshold method is calculated by the 

product of a threshold and a factor. The threshold is chosen 

from those that return a minimax performance, whereas the 

factor represents a small constant proportional to a log(𝑋). In 

this case, 𝑋  is the length of a sample. The Q-value is an 

optional parameter assigned only in the case of FDR method. 

It corresponds to the false positives proportion. The Q-value 

can take the value from 0 until ½, i.e., 0 < 𝑄 ≤ 1/2. 

In order to filter wavelet coefficients, the authors depend on 

the threshold rule. However, only certain threshold rule is 

applied for certain denoising method. The Method of 

estimating variance of noise in the data is defined as either 

Dependent or Independent. Variance of the noise is 

estimated at each resolution level using Level Dependent. On 

the other hand, the noise variance is estimated on the highest 

resolution in the case of Level Independent. 

The new signal realised from the best performed wavelet is 

assessed based on two criteria- the Signal-to-Noise Ratio 

(SNR) and Root-Mean-Square-Error (RMSE). According to 

Carlson (1968), SNR is a ratio of a signal to a noise level. In 

other words, the SNR measures the useful signal level against 

the irrelevant signal. 

 

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 (1) 

 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  and 𝑃𝑛𝑜𝑖𝑠𝑒  denote the power of signal and 

noise, respectively. Another note to be taken is that the 

definition of the SNR works under the assumption that 

the measurements of the desired signal and noise are 

executed at the output of the bandpass filters, within the 

same bandwidth of system (Kieser, Reynisson & Mulligan, 

2005).  

The authors then deliberate the assessment to 

additionally consider on two other criteria- mean value of 

the relative pricing error (MRPE) and mean value of the 

absolute relative pricing error (MARPE). The mean value 

of the relative pricing error (MRPE) is the sample average 

of the respective retrieved volatility minus the volatility 

true value, divided by the true value. RMSE is simply the 

square root of the averaged squared error (SE). The 

average is obtained by dividing the SE by the total 

number of samples used in the calculation. The mean 

value of the absolute relative pricing error (MARPE) is the 

absolute sample average of the respective retrieved 

volatility minus the true value, divided by the true value. 

S.D. is the standard deviation. 

 

V. RESULT AND 
DISCUSSION 

 

The performance of how each denoised signal is 

approximated against the noisy original signal is 

compared in this section.
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Table 3.  Performance of 11 Wavelet Denoised Signals of Call Options 

Denoised 

Signal 

Signal-to-

Noise Ratio 

(dB) 

RMSE 

(pts) 
S.D. 

MRPE 

(%) 

S.D. 

(%) 

MARPE 

(%) 

S.D. 

(%) 

gNoise1 14.4049 0.1734 0.0734 4.4879 11.0788 4.8276 10.9350 

gNoise2 16.4055 0.1380 0.0002 4.4870 11.3439 4.8534 11.1921 

gNoise3 13.6433 0.1887 0.8096 4.4905 10.8955 4.9622 10.6890 

gNoise4 14.7273 0.1652 0.1595 4.4875 11.2612 4.9531 11.0643 

gNoise5 15.9754 0.1461 0.1419 4.4856 10.9982 4.8113 10.8596 

gNoise6 14.0853 0.1786 0.1186 4.4878 10.9059 4.8701 10.7406 

gNoise7 16.1039 0.1425 0.0038 4.4874 11.2710 4.8275 11.1296 

gNoise8 19.0515 0.1023 0.0001 4.4870 11.3442 4.8537 11.1922 

gNoise9 14.8620 0.1624 0.0882 4.4877 11.0025 4.8736 10.8371 

gNoise10 15.2549 0.1575 0.0065 4.4871 11.3409 4.8566 11.1877 

gNoise11 14.5091 0.1695 0.4670 4.4897 10.6185 4.8770 10.4462 

 

Table 4.  Performance of 11 Wavelet Denoised Signals of Put Options. 

Denoised 

Signal 

Signal-to-

Noise Ratio 

(dB) 

RMSE 

(pts) 
S.D. 

MRPE 

(%) 

S.D. 

(%) 

MARPE 

(%) 

S.D. 

(%) 

fNoised1 16.8853 0.0863 0.0399 0.0821 0.3899 0.2168 0.3339 

fNoised2 15.2166 0.1028 0.0313 0.0594 0.3052 0.1621 0.2650 

fNoised3 14.5021 0.1127 0.0515 0.0893 0.4601 0.2356 0.4048 

fNoised4 16.1669 0.0937 0.0428 0.0631 0.3663 0.1979 0.3143 

fNoised5 13.9493 0.1206 0.0246 0.0806 0.3408 0.1958 0.2899 

fNoised6 13.6125 0.1208 0.0461 0.0802 0.4121 0.2164 0.3593 

fNoised7 16.5549 0.0900 0.0273 0.0646 0.2965 0.1738 0.2484 

fNoised8 19.2202 0.0666 0.0184 0.0481 0.2094 0.1227 0.1761 

fNoised9 13.0860 0.1326 0.0367 0.0633 0.3568 0.1955 0.3047 

fNoised10 18.4424 0.0730 0.0317 0.0648 0.3641 0.2067 0.3062 

fNoised11 16.3218 0.0923 0.0366 0.0761 0.3822 0.2128 0.3261 

Two primary measures are considered in assessing the 

denoised signal performance, i.e. Signal-to-Noise Ratio 

(SNR) and Root-Mean-Square Error (RMSE). Eleven 

denoised signals are generated for both cases of call and put 

options. The denoised signals are made to be built on 

different combination of parameters -   wavelet family, 

denoising method, threshold rules and noise estimate level.  

In examining the denoising performance of each signal 

generated, the denoised signal is plotted together with the 

original signal, as well as the coarse scale approximation of 

the signal. The coefficient plot indicates the level of 

decomposition that has underwent by the denoised signal. 

The plots of denoised signals against the original signal 

indicate the approximation plots of most signals are relatively 

noisy. A relatively clean approximation, however, is evident 

for the case of the 6-level decomposition wavelet, i.e. the 

gNoise8 signal. With regards to put options, the coarse scale 

approximation plots do not apply the same as in the case of 

the call options. To make an early deduction based on the 

plots per se can lead to biasness.  

Further assessment on the performance of each denoised 

signal generated from the different combination of 

parameters as produced in this study is conducted using 

the SNR and RMSE against the original noisy signal. The 

respective results of both call and put options are 

represented in Table 3 and Table 4. From the tables, 

superior results are achieved by the gNoise8 signal with 

regards to call options. Both SNR (19.0515) and RMSE 

(0.1023) are recorded in the case of this 6-level 

decomposition of Symlet8 wavelet. Concerning put 

options, the best-performed denoised wavelet signal is 

realised by the fNoised8 signal.  

Indifferent from the call options, the signal which is 

reconstructed from the 4-level of Symlet6 wavelet 

decomposition is found to produce the largest SNR 

(19.2202), and the least RMSE (0.0666). 

Based on the comparison among the eleven wavelet 

signals respective to both call and put options, obvious 

finding is reached, i.e. the Symlet8 wavelet produces the 

best denoised signal. Additional pricing error measures 

based on MRPE and MARPE reported to be comparably 

small for both cases of studies; hence supporting the 

robust findings highlighted. 
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Table 5.  Signal-to-Noise Ratio of Wavelet Signal against 

Smoothing-Method-Produced Signals of Call Options 

Denoised Signal 
Signal-to-Noise 

Ratio (dB) 

gNoise8 19.0515 

Moving average 13.1225 

Savitsky-Golay 14.4083 

Gaussian 14.4083 

Moving Median 12.75360 

Linear regression 14.2383 

Quadratic regression 15.5252 

Robust linear regression 14.0578 

Robust quadratic regression 14.6336 

 

Additional investigation is done to include the comparison 

of the wavelet signal performance against other smoothing-

method-produced signals. Eight smoothing methods are 

considered in comparing the Signal-to-Noise Ratio against 

the wavelet signal. The smoothing methods are Moving 

Average, Savitsky-Golay, Gaussian, Moving Median, Linear 

Regression, Quadratic Regression, Robust Linear Regression 

and Robust Quadratic Regression. Based on the SNR 

comparison results, the gNoise8 signal consistently records 

the biggest SNR, hence the best-performed signal. 

 

Table 6.  Signal-to-Noise Ratio of Wavelet Signal against 

Smoothing-Method-Produced Signals of Put Options 

Denoised Signal 
Signal-to-Noise 

Ratio (dB) 

gNoise8 19.2202 

Moving average 11.9691 

Savitsky-Golay 12.9341 

Gaussian 12.9341 

Moving Median 11.9324 

Linear regression 12.5929 

Quadratic regression 12.9940 

Robust linear regression 12.5929 

Robust quadratic regression 12.9940 

 

Similar results are achieved in the case of put options. 

The most superior signal is found to consistently be the 

fNoised8 signal. The SNR of 19.2202 is recorded to be the 

biggest value, even against other eight smoothing-method-

produced signals. The pricing performance of the wavelet-

improved option prices are further compared against the 

non-wavelet-improved option prices. The authors 

investigate the pricing errors generated from both wavelet-

improved data series as well as non-wavelet-improved 

data series

Table 7.  Summary of Error Analysis of the Wavelet-Improved Option Prices against the Non-Wavelet-Improved Option 

Prices 

Signal 
RMSE 

(pts) 
S.D. 

MRPE 

(%) 

S.D.  

(%) 

MARPE 

(%) 

S.D.  

(%) 

Panel A: Call Options 

Non-wavelet-improved 0.3599 1.4547 136.6815 332.9900 136.8018 332.9406 

Wavelet-improved 0.3572 1.4520 136.6883 330.0533 136.6997 330.0486 

Panel B: Put Options 

Non-wavelet-improved 0.3230 0.3689 263.8663 186.2364 263.892 186.2000 

Wavelet-improved 0.3149 0.3544 264.0043 171.6148 264.0577 171.5328 

  

The results are expressed in terms of root-mean-square-

error (RMSE), mean value of the relative pricing error 

(MRPE), mean value of the absolute relative pricing error 

(MARPE), in addition to the standard deviation in Table 7. 

The RMSE results in Table 7 confirmed that the option 

prices generated out of the wavelet denoising process 

outperform those that do not undergo the process. The 

performance of how each wavelet-improved moment is 

approximated against the true values is compared based on 

three approaches: basic method, adapted method; and 

advanced method. The skewness and kurtosis in this study 

are set to be always γ1 = 0 and γ2 = 3, respectively based on 

the normal distribution. The option prices of both calls and 

puts, in which inclusive for both out-of-the-money (OTM) 

and at-the-money (ATM) moneyness are estimated using 

the Black-Scholes-Merton option pricing model. The tick 

size of the strike prices is chosen to be $1, ranging from K 

= 54 to 150. The wavelet-improved model-free moments 

estimated by the three methods – basic, adapted, and 

advanced – are reported in Table 8. 

 

 

 

 

 

 

Table 8.  Estimated Values of Improved Model-Free 

Moments 
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Model-Free 

Moments 

True 

Values 

Estimated Values 

Basic Adapted Advanced 

T-Period 

Variance (σT
2) 

0.0225 0.0151 0.0154 0.0188 

T-Period 

Skewness 

(γ1T) 

0.0000 -2.6699 -2.5947 -2.6353 

T-Period 

Kurtosis (γ2T) 
3.0000 39.8798 38.3653 48.3879 

 

In order to analyse further on how each estimated value 

generated from the three methods deviate from the true 

values, an approximation error based on the absolute method 

is presented in Table 9. It can be observed that the basic 

method performs poorly in estimating all model-free 

moments in all three methods. It occurs in this study that the 

adapted approach is more accurate compared to the 

advanced method. Nevertheless, looking at the number per se 

is quite unreliable. The relative error is found to be much 

relevant as the different in the absolute error can be quite 

negligible by number per se. The relative error for model-free 

wavelet-improved moments estimates is reported 

subsequently in Table 10. Special condition is applied in the 

case of skewness, in which the true value is assumed to be 

0.100 to cater the zero-denominator problem in finding 

the percentage value of the absolute error.    

It is obvious that the advanced approach fails to 

accurately estimate the model-free moments in the case of 

skewness and kurtosis estimations. The percentage 

difference between the adapted and advanced method 

itself is quite small, i.e. 1.35% in estimating skewness and 

3.23% in estimating kurtosis. Thus, the adapted method 

performs the best in estimating the model-free skewness 

and kurtosis. With the small different in percentage, 

however, a clear line can be established in drawing 

conclusion that the advanced method is reliably quite 

accurate in all cases of estimations. Further comparison 

analysis is conducted between the wavelet-improved 

MFBKM moments and the original signals. This study 

finds that the wavelet-denoised higher moments record 

smaller approximation error in most cases compared to 

the noisy higher moments. It is shown that wavelet 

improves both consistency and error approximation of 

the signal. The results are observed in Table 9 and Table 

10. 

  

Table 9.  Absolute Error for Improved and Noisy Model-Free Moments Estimates 

Model-Free Moments 
True 

Values 

Wavelet-Improved MFBKM  NoisyMFBKM 

Basic Adapted Advanced  Basic Adapted Advanced 

T-Period Variance (σT
2) 0.0225 0.0074 0.0071 0.0037  0.0075 0.0071 0.0040 

T-Period Skewness (γ1T) 0.0000 2.6699 2.5947 2.6353  2.6522 2.5748 2.7093 

T-Period Kurtosis (γ2T) 3.0000 36.8798 35.3653 45.3879  36.9404 35.3627 45.0483 

 

Table 10.  Relative Error for Improved and Noisy Model-Free Moments Estimates 

Model-Free Moments 
True 

Values 

Wavelet-Improved MFBKM  NoisyMFBKM 

Basic Adapted Advanced  Basic Adapted Advanced 

T-Period Variance (σT
2) 0.0225 0.3271 0.3141 0.1641  0.3312 0.3177 0.1771 

T-Period Skewness (γ1T) 0.0000 26.6993 25.9467 26.3527  26.5220 25.7480 27.0930 

T-Period Kurtosis (γ2T) 3.0000 12.2933 11.7884 15.1293  12.3135 11.7876 15.0161 

 

VI. CONCLUSION 
 

This research focuses on investigating the effect of wavelet on 

denoising the noisy-embedded signal. Eleven wavelet-

denoised signals are considered with regard to both call and 

put options in controlling the noise of the original data. The 

wavelet signals are generated based on variant combination 

of parameters. The parameters are manipulated to include 

various combinations of wavelet family, denoising method, 

threshold rules as well as noise estimate level. There are six 

different denoising methods considered in this study –the 

Empirical Bayesian, Block James-Stein, Universal 

Threshold, Stein’s Unbiased Risk Estimate (SURE), False 

Discovery Rate (FDR), and Minimax Estimation. The 

performances of the wavelet signals are examined against 

the original strike-option signal. Further comparison is 

executed to include eight other smoothing-method-

generated signals. This study considers the sample data 

extracted from DJIA index options data, which covers the 
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period from January 2009 until the end of 2015.      

The wavelet-denoised signals are plotted with respect to the 

original signal, along with the coefficients used to reconstruct 

the denoised signals, for call and put options, respectively. 

Based on the plot, the approximation plots of most signals 

are relatively noisy. A relatively clean approximation, 

however, is evident for the case of the 6-level decomposition 

wavelet, i.e. the gNoise8 signal. With regards to put options, 

the coarse scale approximation plots do not apply the same as 

in the case of the call options. Further assessment on the 

signals performance based on the SNR, RMSE, MRPE and 

MARPE depicts superior results are achieved by the gNoise8 

and fNoised8 signals, with regards to call and put options. 

Interestingly, the gNoise8 and fNoised8 signals consistently 

record the biggest SNR, hence the best-performed signals, 

even in comparison with eight other smoothing-method-

produced signals.  

This study finds that the wavelet-denoised higher moments 

record smaller approximation errors in most cases compared 

to the noisy higher moments. It is shown that wavelet 

improves both consistency and error approximations of the 

signal. The adapted method is found to perform the best 

in estimating the model-free skewness and kurtosis. It is 

evident in this study that the superiority of wavelet in 

producing denoised model-free higher moments 

effectively. This provides a platform that benefits further 

research to include wavelet in controlling the noise 

embedded inside a data.   
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