
Received June 26, 2020, accepted July 15, 2020, date of publication July 24, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011652

Efficient Computation of Skyline Queries Over a
Dynamic and Incomplete Database
GHAZALEH BABANEJAD DEHAKI1, HAMIDAH IBRAHIM 1, FATIMAH SIDI 1,
NUR IZURA UDZIR 1, ALI A. ALWAN 2, AND YONIS GULZAR3
1Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
2Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100,
Malaysia
3Department of Management Information Systems, College of Business Administration, King Faisal University, Hofuf 31982, Saudi Arabia

Corresponding author: Hamidah Ibrahim (hamidah.ibrahim@upm.edu.my)

This work was supported by the Malaysian Ministry of Science, Technology, and Information (MOSTI) under the Fundamental Research
Grant Scheme (Grant No. 08-01-16-1853FR) and the Universiti Putra Malaysia.

ABSTRACT Skyline queries rely on the notion of Pareto dominance, filter the data items by keeping only
those data items that are the best, most preferred, also known as skylines, from a database to meet the user’s
preferences. Skyline query has been studied extensively and a significant number of skyline algorithms have
been proposed, mostly attempt to resolve the optimisation problem that is mainly associated with a reduction
in the processing time of skyline computations. In today’s era, the presence of incomplete data in a database
is inevitable. Furthermore, databases are dynamic in nature in which their states change throughout the time
to reflect the current and latest information of the applications. The skylines derived before changes are made
towards the initial database are no longer valid in the new state of the database. Blindly examining the entire
database to identify the new set of skylines is unwise as not all data items are affected by the changes made
towards the database. Hence, in this paper we propose a solution, named DyIn-Skyline, which is capable
of deriving skylines over a dynamic and incomplete database, by exploiting only those data items that are
affected by the changes. Several experiments have been conducted and the results show that our proposed
solution outperforms the previous works with regard to the number of pairwise comparisons and processing
time.

INDEX TERMS Skyline queries, incomplete database, dynamic database, pairwise comparisons.

I. INTRODUCTION
Query processing which extracts data items1 from a database
according to a set of access criteria, also known as conditions,
and presents these data items to the user for use, has achieved
tremendous success at both research and industry levels.
There are many types of queries that have been introduced
mainly to accommodate the different needs of applications
or systems. For instance, a temporal query (based on tem-
poral query language) retrieves time-referenced or temporal
data for applications that require information relating to the
past, present, and future time. On the other hand, a spatial
query which uses geometry data types such as points, lines,
and polygons and considers the spatial relationships between

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora .
1Without loss of generality, we use the term data item throughout this

paper to be in line with other research works in similar area. The terms data,
object, record, and tuple can also be used in this context.

these geometries; is useful in Geographic Information System
(GIS), Multimedia Information System (MIS), or Computer
Aided-Design (CAD).

The traditional query processing operates either by retriev-
ing data items from a database that strictly satisfy each con-
dition specified in the query or returning an empty result
if otherwise. The recent developments in query processing
attempt to relax these stringent requirements, by retriev-
ing the best, most preferred data items from a database
according to the conditions specified in the query, also
known as user-defined preferences. These preference queries
employ preference evaluation techniques, have achieved sig-
nificant success, as they are widely used in applications
related to multi-criteria decision support. During the two
past decades, several preference evaluation techniques have
been introduced, among them are: top-k [30], skyline [8],
[10]–[13], [20], [25], [29], [33], [35], k-dominance [5], top-k
dominating [19], and k-frequency [6].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 141523

https://orcid.org/0000-0002-9900-0531
https://orcid.org/0000-0001-9556-9045
https://orcid.org/0000-0002-0543-3329
https://orcid.org/0000-0003-3279-9366
https://orcid.org/0000-0003-4765-8371

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

Skyline queries rely on the notion of Pareto dominance
filter the data items from a database by keeping only those
data items that are not worse than any other. It is a well-known
technique that is utilised to identify the best, most preferred
data items, also known as skylines, from a database to meet
the user’s preferences. Consider a user who wanted to go
for a holiday with the following preferences: (i) hotel that is
nearest to the beach (minimum distance) and (ii) hotel with
the cheapest price (minimum price). Generally, hotels that are
near to a beach are expensive as compared to those which
are far away from a beach, which implies that the chances to
find a hotel that meets both preferences are nil. Taking this
into consideration, the user is left with three choices: (i) hotel
that is nearest to the beach (minimum distance) while the
price is not the cheapest, (ii) hotel with the cheapest price
(minimum price) while it is not the nearest hotel to the beach,
and (iii) hotel(s) with price cheaper than hotel (i) and distance
nearer than (ii). Eventually, the user will have to make the
final decision by choosing a hotel from these filtered hotels.
Unlike the traditional query which will obviously return an
empty result since there is no hotel with minimum price
and minimum distance, the skyline query which relies on
the powerful skyline operator introduced by [29] managed to
return results that are not dominated by any other based on
the user-defined preferences.

Since the introduction of skyline queries, there are a
lot of research works that have been conducted mainly
to solve the optimisation problem in computing the sky-
lines [7], [8], [10], [12], [18], [25]. The skyline operator
introduced by [29] only works with the assumption that data
items in the database are comparable. However, in today’s era,
the presence of incomplete data in a database is inevitable.
The skyline algorithms in such situation will have to deal with
several issues besides the optimisation problem. The missing
values in databases give a negative influence on the number
of pairwise comparisons that needs to be performed between
the data items. Moreover, the transitivity property of skylines
is no longer hold. Cyclic dominance is another issue that
needs to be tackled as it yields empty skyline results [23]. Fur-
thermore, databases need to frequently change their state to
reflect the current and latest information of the applications.
The changes are normally achieved through data manipula-
tion operations like insert, delete, or update operations. The
skylines derived before changes are made towards the initial
database are no longer valid in the new state of the database.
Utilising the existing skyline algorithms would require com-
puting the skylines over the entire database after changes are
made which is unwise as not all the data items are affected
by the changes. Hence, the incompleteness and dynamism
nature of data make the process of identifying skylines no
longer a trivial task. This paper takes the challenge to solve
the problem associated to identifying skylines over a dynamic
and incomplete database. In general, the main contributions
of this work are briefly described as follows:
• We have proposed a solution, named DyIn-Skyline, that
is capable of deriving a set of skylines over a dynamic

and incomplete database. DyIn-Skyline consists of two
main phases, that are simply named as Phase I and
Phase II. Phase I focuses on the processing of sky-
line queries over the initial incomplete database while
Phase II focuses on the processing of skyline queries
over a dynamic and incomplete database, in which the
changing state of the database is due to a data manipula-
tion operation(s) (insert, delete or update a data item(s)).

• We have introduced and designed three main lists,
namely: Domination History (DH), Bucket Dominating
(BDG), and Bucket Dominated (BDD), that keep track
of the domination relationships, dominating data items,
and dominated data items, respectively. These lists are
crucial as they assist in identifying the data items that are
affected by the changes made towards a database, hence
excluding the unaffected data items from the process of
computing skylines.

• The experimental results of the proposed solution are
presented to prove DyIn-Skyline’s capability in deriv-
ing a set of skylines after changes are made towards a
database.

The rest of the paper is organized as follows. Section II
reviews the approaches proposed by previous studies that are
related to the issues highlighted in this paper. Section III
presents the definitions and introduces the notations used
throughout this paper. Section IV presents our proposed solu-
tionDyIn-Skyline. PartA of Section IV presents thePhase I of
DyIn-Skylinewhile Part B of Section IV presents the Phase II
of DyIn-Skyline. Section V evaluates the performance of our
proposed solution, DyIn-Skyline, which is compared to other
previous works. The last section concludes this work and
sheds light on some directionswhich can be used in the future.

II. RELATED WORK
There are various techniques that have been proposed for
preference queries, which include top-k [30], k-dominance
[4], top-k dominating [20], k-frequency [7], skylines [29],
multi-objective skyline [3], and ranked skylines [15]. These
techniques attempt to find the best results that meet the user’s
preferences. Besides, several skyline algorithms have been
introduced such as Block-Nested-Loop (BNL) [29], Divide
and Conquer (D&C) [29], Bitmap and Index [18], Sort-Filter-
Skyline (SFS) [12], Nearest Neighbor (NN) [8], Branch-
and-Bound Skyline (BBS) [7], Linear Elimination Sort for
Skyline (LESS) [10], and Sort and Limit Skyline algorithm
(SaLSa) [10]. The BNL [29] retrieves skyline points by read-
ing a set of data items and comparing them to each other;
the dominated data items after the comparisons are removed
while the remaining ones are the final skylines. Meanwhile,
theD&C algorithm [29] divides the database into smaller par-
titions with an attempt to reduce the searching space. For each
partition, the local skylines are retrieved. These local skylines
are then compared to each other to remove the dominated
ones while the remaining data items are the final skylines.
The Bitmap method introduced by [18] assigns a bit (0 or 1)
to each dimension of the data items and performs the AND

141524 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

operation over them while the Index method proposed by the
same authors [18] splits the database into smaller sections.
In each section, the data items are categorised based on the
smallest value in the same dimension. The local skylines of
each section are then computed and these local skylines are
compared to derive the global skylines. The SFS algorithm
proposed by [12] sorts the data items based on a specific
sorting function in a way that the data items which are stored
at the beginning of the relation are delivered instantly as
preliminary skylines. In addition, the NN algorithm [8] which
utilises the D&C scheme to split the indexed database into
small regions in order to prune the searching space, attempts
to retrieve the first skylines while the algorithm is running.
Nevertheless, the BBS algorithm [7] aims at returning sky-
lines in a progressive manner with fewer amount of data
needed to be accessed. BBS employs the R-tree indexes to
compute the skylines based on the best first nearest neighbour
search. LESS [10] is an algorithm that works on non-indexed
data and does not require any additional pre-processing steps.
It adopts the benefits of BNL [29] and SFS [12] while avoid-
ing their disadvantages to provide a substantial enhance-
ment on the process of preference evaluation. The SaLSa
algorithm [10] exploits the concept of SFS [12] method to
pre-sort the data items and progressively select a subset of
the data items to derive the skylines. However, all of the above
algorithms focus on the issues of skyline computations with
the assumption that the database is complete and static.

In recent past, focus has been given to resolving issues
related to the incompleteness of data in a database, in which
several preference query approaches have been estab-
lished [1], [2], [9], [14], [16], [17], [23], [24], [27], [31], [32],
[34]. Most of these works focus on top-k and k-dominant
queries [31], [32] while others like [14], [16], and [17] con-
centrate on techniques to rank the skyline results. The Top-k
dominating (TKD) algorithm [31] utilises the upper bound
score pruning and bitmap binning strategies while k-dominant
Skyline Queries on Incomplete Data (IkDS) [32] rely on
the conventional strategies, namely: local skyline, dominance
ability, bitmap index in retrieving skyline results. Moreover,
pruning strategy and probabilistic model have been used
by [16] and [17] in ranking the skyline results. Meanwhile,
the works by [24] and [34] combine both top-k and skylines
to gain a better set of skyline results. To the best of our
knowledge only the works by [2], [23], and [27] have made
attempts to tackle the issues of processing skyline queries
over an incomplete database which are further elaborated
below.

The early research work on processing skyline queries over
incomplete database is conducted by [23] in which two algo-
rithms are proposed, namely: Bucket and Iskyline. The Bucket
algorithm divides the data items of the database into distinct
buckets based on their bitmap representation. Each bucket
contains the data items which have missing values in the
same dimensions. Then, the conventional skyline algorithm is
utilised on each bucket to identify the local skylines. Finally,
the local skylines of each bucket are compared to each other

to derive the final skylines. The Iskyline algorithm handles
the skyline queries over an incomplete relational database by
dividing the initial database into distinct nodes depending on
the missing values of the dimensions and then applying the
conventional skyline technique to retrieve the local skylines
in every node. Iskyline method conducts two optimisation
techniques that reduce the number of local skylines in every
node. However, Iskyline is time consuming as in each node
many pairwise comparisons need to be performed to find the
local skylines.

In SIDS which is proposed by [27], the input data set
is pre-sorted in non-increasing order for each dimension,
to determine the processing order of the points. The proposed
approach chooses one of the dimensions in a round-robin
fashion and then, the point having the next best value in
that dimension is chosen for processing. There are two vari-
ables that are processedCount and dimCount. processed-
Count keeps track of the number of times a point has been
processed from the sorted arrays while dimCount, stores the
number of complete dimensions. There are also two sets,
namely: CandidateSet and ResultSet. CandidateSet stores the
candidate skyline points. ResultSet stores the points which
are determined to be the final skyline points. CandidateSet
is initialised to the data set size. Also, there is an array
pointer, ptr1. The intuition behind this is to process relatively
dominant points early, so that non-skyline points can be
pruned as early as possible. Consequently, a lesser number of
comparisons would be required for determining the skylines
and this would, in turn, reduce the execution time of the algo-
rithm. The algorithm initially considers all points in the data
set as candidate skyline points and then iteratively removes
dominated points from the candidate set. If a point has not
been pruned yet and has been processed k times, where k
is the count of complete dimensions for the point, then it is
determined to be a skyline point and can be returned imme-
diately. The reason is any point with k complete dimensions
can be dominated in at most k dimensions.
In Incoskyline [2], first the input data set is categorised in

the related bucket like the Iskyline algorithm. Then grouping
and finding local skylines are performed. The groups are
created based on the highest value of one of the data items
in the cluster. Those data items that shared the same highest
value are grouped in the same group. Besides that, the lowest
value of the data items in each created group is determined
as well. The upper bound of a cluster, ubc, and the lower
bound of a group, lbg, help to stop examining the remaining
data items of a cluster if ubc is less than or equal to lbg of
a recently created group. The next phase removes the local
skylines of a cluster which are dominated by the local skylines
of other cluster(s). This is achieved by deriving a set of virtual
skylines named k-dom from the local skylines. These k-dom
are then merged to derive only one global k-dom skyline by
considering the highest value in each dimension of the k-dom
skylines. Furthermore, this global k-dom skyline is inserted
at the top of each cluster to eliminate the dominated local
skylines. The last phase of their proposed approach attempts

VOLUME 8, 2020 141525

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

to identify the data items that are not dominated by any other
data items in the entire database. The final result is retrieved
after conducting pairwise comparisons among the candidate
skylines.

Nevertheless, there are algorithms which are proposed
specifically for a dynamic database; most of them are based
on top-k . For instance, the work by [21] focuses on top-k
and top-k dominating and reviews algorithms for evaluat-
ing continuous preference queries under the sliding window
streaming model. Also, a k-dominant skyline algorithm has
been presented in [6]. In their work when the data set is
changed, the existing k-dominant skylines are compared to
the new k-dominant data items to derive the results [6].

Table 1 summarises the works presented in this section.

TABLE 1. Summary of the related works.

III. PRELIMINARIES
This section presents the definitions and introduces the nec-
essary notations that are used throughout this paper.
Definition 1 (Incomplete Database): A database, D, with

m dimensions, d = {d1, d2, . . . , dm} and n data items D =
{p1, p2, . . . , pn} is incomplete denoted as DI if and only if
it contains at least a data item pi with missing value in one

or more of its dimensions, dj, where dj ∈ d ; otherwise, it is
complete. We use the symbol ‘–‘ to denote a missing value.
For example, the data item pi(–, 6, 2, –) demonstrates that the
first and fourth dimensions have missing values.
Definition 2 (Comparable):Given a databaseDwith n data

itemsD= {p1, p2, . . . , pn}, pi and pj are said to be comparable
if and only if they have the same bitmap representation. Each
data item is represented as a bitmap representation where the
bit 1 is used to represent the dimensions with no missing
values while the bit 0 is used to represent the dimensions with
missing values. Data items that are comparable imply either
they are complete or they have missing values in the same
dimension(s); otherwise, they are said to be incomparable.
For instance, the bitmap representations of the data items
pi(–, 6, 2, –) and pj(7, –, –, 9) are 0110 and 1001, respectively.
Thus, these two data items are said to be incomparable.
Definition 3 (Dominance Relationship): Given a database,

D, with m dimensions, d = {d1, d2, . . . , dm} and n data items
D = {p1, p2, . . . , pn}, pi is said to dominate pj denoted by
pi � pj if and only if the following condition holds: ∀dk ∈ d ,
pi.dk ≥ pj.dk ∧ ∃dl ∈ d , pi.dl > pj.dl . Throughout this
paper, we assume that greater values are preferred over lesser
ones. For instance, consider the data items pi(7, 6, 2, 8) and
pj(7, 5, 1, 8), pi � pj as pi is better than pj in the second and
third dimensions (true on the second part of the condition),
while pi is equal to pj in the first and fourth dimensions (true
on the first part of the condition). This definition applies to
those data items that are comparable (refer to Definition 2).
Definition 4 (Skylines): Given a database D with n data

items D = {p1, p2, . . . , pn}, pi is a skyline of D if there are
no other data items pj ∈ D that dominates pi. We use the
symbol S to denote the set of skylines of a database D.
Definition 5 (Transitivity property of skylines): Skylines

hold the transitivity property that means given a database D
with n data items D = {p1, p2, . . . , pn}, if pi � pj and pj
� pk , then this implies that pi � pk and pk 6� pi [29].
However, in an incomplete database the transitivity property
of skylines no longer holds due to cyclic dominance where
none of the data items is considered as skyline as every
data item is dominated by at least one other data item. This
means, if pi � pj and pj � pk , then it is possible that
pk � pi and pi 6� pk . For example, consider the following
incomplete data items, pi(4, 3, 4, −), pj(2, 1, −, 5), and
pk (−, −, 5, 2). Here, pi dominates pj as pi is greater than pj
in the common dimensions (i.e. first and second dimensions).
Also, pj dominates pk as the only common dimension is the
fourth dimension in which pj is greater than pk . However,
when comparing pi to pk , the third dimension is the only com-
mon dimension in which pk is greater than pi. Thus, pi does
not dominate pk whichmeans that the dominance relationship
is non-transitive.Moreover, pk dominates pi whichmeans that
the dominance relationship ends to be cyclic. As a result, none
of the data items can be considered as a skyline.
Definition 6 (Revised Bitwise): Given a database D with

n data items D = {p1, p2, . . . , pn}, pi and pj with different
bitmap representations, i.e. pi and pj are incomparable as

141526 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

defined in Definition 2. Nevertheless, pi and pj are compa-
rable on their revised bitwise if it is not equal to 0, which
is obtained by performing an AND operation on the bitmap
representations of pi and pj. For instance, the bitmap repre-
sentations of the data items pi(–, 6, 2, –) and pj(7, –, –, 9)
are 0110 and 1001, respectively. Based on Definition 2, these
two data items are incomparable. They are also incomparable
based on their revised bitwise which is obtained by perform-
ing the AND operation on the 0110 and 1001; which results
in 0000 or simply 0.
Definition 7 (Dominance Relationship on the

Revised Bitwise): Given a database, D, with m dimensions,
d = {d1, d2, . . . , dm} and n data items D = {p1, p2, . . . ,
pn}; and two data items pi and pj ∈ D with different bitmap
representations. If their revised bitwise is not equal to 0, then
pi is said to dominate pj on the revised bitwise denoted by
pi � pj if and only if the following condition holds: ∀dk ∈ d ′,
pi.dk ≥ pj.dk ∧ ∃dl ∈ d ′, pi.dl > pj.dl where d ′ is a set
of dimensions whose revised bitwise representation is 1 and
d ′ ⊂ d . For instance, consider the data items pi(–, 6, 2, –)
and pj(–, 5, –, 5), pi � pj as pi is better than pj in the second
dimension.
Definition 8 (Dynamic Database): A database, D, is said

to be dynamic denoted as DD if the data items in the database
keep on changing in which a new data item(s) is inserted into
the database, while an existing data item(s) of the database is
deleted or updated.
Definition 9 (Database State): Given an incomplete

database, DI (refer to Definition 1), its state is changed to
a new state, Dnew, due to the following operations:
• Insert operation: Dnew = DI

⋃
D<insert> where

D<insert> is a set of data items to be inserted into the
initial database, DI .

• Delete operation: Dnew = DI – D<delete> where
D<delete> is a set of data items to be deleted from the
initial database, DI .

• Update operation: Dnew = (DI – D<delete>)
⋃
D<insert>

where an update operation is considered as a delete
operation followed by an insert operation.

Definition 10 (Skylines of Dnew): Given a database Dnew
with l data items D= {p1, p2, . . . , pl}, pi is a skyline of Dnew
if there are no other data items pj ∈ Dnew that dominates pi.
Since the focus of this paper is on incomplete and dynamic
database, without loss of generality the database Dnew is also
an incomplete database as well as a dynamic database as
defined in Definition 1 and Definition 8, respectively and
hence pi ∈ DI and pi ∈ DD.
Definition 11 (Skylines of Dnew due to D<insert>): Given

a database D with n data items D = {p1, p2, . . . , pn}, pi is
a skyline of D if there are no other data items pj ∈ D that
dominates pi. Assume that the set of skylines derived based
onD is S. Given theD<insert> = {q1, q2, . . . , qq}, theDnew =
{p1, p2, . . . , pn, q1, q2, . . . , qq}, the set S is still valid if and
only if for every pl ∈ S there are no data items qk ∈ D<insert>
that dominates pl , otherwise a new set of skylines S ′ needs to
be computed as defined in Definition 10.

Definition 12 (Skylines of Dnew due to D<delete>): Given
a database D with n data items D = {p1, p2, . . . , pn}, pi is
a skyline of D if there are no other data items pj ∈ D that
dominates pi. Assume that the set of skylines derived based
onD is S. GivenD<delete> = {pi, pj, . . . , pl}, theDnew = {p1,
p2, . . . , pn} – {pi, pj, . . . , pl}, the set S is still valid if and only
if for every pl ∈ D<delete>, pl /∈ S, otherwise a new set of
skylines S’ needs to be computed as defined in Definition 10.
Definition 13 (Skylines of Dnew due to an update opera-

tion): Given a database D with n data items D = {p1, p2, . . . ,
pn}, pi is a skyline ofD if there are no other data items pj ∈ D
that dominates pi. Assume that the set of skylines derived
based on D is S. Since an update operation is considered as
a delete operation followed by an insert operation, thus the
set of skylines over Dnew is based on the definitions given in
Definition 12 and Definition 11.
As defined in Definition 9, a database D changed its

state to a new state, Dnew, due to the following operations:
(i) insert operation, (ii) delete operation, and (iii) update oper-
ation. In the following we show the significant of avoiding
unnecessary skyline computations by analysing the number
of pairwise comparisons after each of the above operation
is performed. Here, we assume a worst-case scenario while
both the best-case and average-case scenarios are presented
in Table 2. Given a database, D, with m dimensions, d =
{d1, d2, . . . , dm} and n data items D = {p1, p2, . . . , pn},
to derive a set of skylines, S, over D requires m

[
n(n−1)

2

]
pairwise comparisons.

TABLE 2. Number of pairwise comparisons based on the type of data
manipulation operation.

Given the D<insert> = {q1, q2, . . . , qr}, the Dnew = {p1,
p2, . . . , pn, q1, q2, . . . , qr} and to derive the set of sky-
lines, S ′, based on Dnew requires m

[
(n+r)((n+r)−1)

2

]
pairwise

comparisons. However, if S has been derived based on the
initial database D, this implies that the comparisons between
the data items p1, p2, . . . , and pn have been performed
withm

[
n(n−1)

2

]
pairwise comparisons. The new inserted data

items incur an additional of r2+2nr−r
2 pairwise comparisons.

For instance, if n = 10, then 45m pairwise comparisons are
performed to derive S, while inserting a data item say q1 with

VOLUME 8, 2020 141527

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

n + r = 11 will involve 55m pairwise comparisons with
10m additional pairwise comparisons. However, the 45m pair-
wise comparisons have been performed earlier; which in this
paper are considered as the unnecessary skyline computations
which should be avoided by mainly identifying those data
items that are not affected by the changes.

Given theD<delete> = {pi, pj, . . . , pl} with |D<delete>| = l,
theDnew = {p1, p2, . . . , pn} – {pi, pj, . . . , pl} and to derive the

set of skylines, S ′, based on Dnew requires m
[
(n−l)((n−l)−1)

2

]
pairwise comparisons. However, if S has been derived based
on the initial database D, this implies that the comparisons
between the data items p1, p2, . . . , and pn have been per-
formed. Hence, deriving the set of skylines, S ′, based onDnew
would incurm

[
(n−l)((n−l)−1)

2

]
unnecessary pairwise compar-

isons. For instance, if n= 10, then 45m pairwise comparisons
are performed to derive S, while deleting a data item say
q1 will involve 36m pairwise comparisons which have been
performed earlier; these unnecessary pairwise comparisons
should be avoided.

In this paper, an update operation is considered as a delete
operation followed by an insert operation, thus the above two
cases are applied here.

Our proposed solution, named DyIn-Skyline, is capable of
deriving skylines over a database for both the complete and
incomplete databases. Fig. 1 shows an example of a database
with incomplete data, which is used throughout this paper
to clarify the steps of our proposed solution. The database
consists of five dimensions, namely: Data Item, d1, d2, d3,
and d4 where Data Item represents the unique identifier of
a data item while d1, d2, d3, and d4 are the dimensions that
are to be considered in computing the set of skylines of the
database. An example of a real-world database reflected by
the example is the hotel or apartment database where d1, d2,
d3, and d4 are the price, distance from the city centre, service
speed, and dining rate, respectively. A usermight want to seek
for a hotel with the minimum price, the shortest distance to
the city centre, the fastest service, and the lowest dining rate
per head among all the available hotels in the database. For
simplicity, for each data item we limit the number of missing
values to one. However, the proposed solution can handle
various number of missing values. This is clearly shown in
the experiments that we have conducted. Finding the set of
skylines in Dnew should incur the least number of pairwise
comparisons between the data items, which will indirectly
incur the least processing time. The data item pi ∈ Dnew may
have missing values in one or more of its dimensions.

Table 3 summarises the symbols and notations used
throughout the paper.

IV. THE PROPOSED APPROACH, DyIn-SKYLINE
A database may change its state due to a data manipula-
tion operation(s) (insert, delete, update). Once a database
changes its state, the skyline results produced earlier are no
longer valid. Nevertheless, analysing the entire database after

FIGURE 1. An example of an incomplete database.

changes are made in order to identify the new set of skylines,
is unwise as some parts of the database, i.e. those that are not
affected by the changes, have been analysed. Thus, to avoid
unnecessary skyline computations, it is important to capture
the domination analysis that has been performed before the
database is changed. Our proposed solution, named DyIn-
Skyline, consists of two main phases, namely: Phase I – pro-
cessing skyline queries over the initial incomplete database
and Phase II – processing skyline queries over a dynamic
and incomplete database. In Phase I, we introduce and design
three main lists, namely: Domination History (DH), Bucket
Dominating (BDG), and Bucket Dominated (BDD), that keep
track of the domination relationships, dominating data items,
and dominated data items, respectively. These lists are crucial
as they assist in identifying the data items that are affected by
the changes made towards a database, hence excluding the
unaffected data items from the process of computing skylines.
In Phase II, we show how these lists are utilised to avoid

141528 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

TABLE 3. List of symbols/notations.

unnecessary computation of skyline queries when changes
are made towards the database. Part A presents the Phase I
while Part B presents the Phase II.

A. PHASE I
The Phase I aims at deriving a set of skylines given the initial
incomplete database. This phase is performed only once. Our
proposed approach is briefly explained below:

Given an initial incomplete database, DI , a set of skylines,
S, is derived. Note that S is a subset of DI , i.e. S ⊆ DI , and
S is the set of data items that are not dominated by other data
items in DI – S, say ¬ S. When there are changes in the DI ,
then performing pairwise comparisons on the entire new state
ofDI is unwise as comparisons between S and the initial state
ofDI – S (or¬ S) has been performed. Thus, keeping track of
the data items that dominate other data items (i.e. the domi-
nating data items) as well as the data items that are dominated
by other data items (i.e. the dominated data items) can reduce
the number of pairwise comparisons and processing time in
the subsequent phase. Fig. 2 presents the Phase I of DyIn-
Skyline. It consists of three main components, namely: Data
Grouping Builder (DGB), Bucket Skyline Identifier (BSI), and

FIGURE 2. The Phase I of DyIn-Skyline.

Final Skyline Identifier (FSI). Each component is explained
in detail in the following paragraphs.
Data Grouping Builder (DGB) – We assume that the ini-

tial database is incomplete, thus each data item might have
missing values in different dimensions. This will cause cyclic
dominance and difficulty in preserving the transitivity prop-
erty of skylines. In order to resolve the issue due to the
incompleteness of data in the database, the data items should
be grouped into groups in which all data items in the same
group will have missing values in the same dimension(s).
The Data Grouping Builder (DGB) groups the data items
into buckets based on the missing values. This approach has
been used by [2] and [23]. In this approach, each data item is
represented as a bitmap representation (refer to Definition 2
Comparable).

Fig. 3 presents the Data Grouping Builder (DGB) algo-
rithm which is embedded into the Data Grouping Builder
(DGB) component. Each data item, pi, of the initial incom-
plete database, DI , is analysed (step 2). If the bitmap rep-
resentation of pi is the same as the bitmap representation
of any existing buckets, Bj, then the data item is inserted
into the bucket Bj (step 4). Otherwise, a new bucket, Bk ,
is created based on the bitmap representation of the data item
(steps 7 – 8). Fig. 4 shows the results of the DGB algorithm
over the initial incomplete database given in Fig. 1. After

FIGURE 3. The Data Grouping Builder (DGB) algorithm.

VOLUME 8, 2020 141529

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 4. The results of the Data Grouping Builder (DGB).

applying the algorithm, all data items with the same bitmap
representation are grouped into the same bucket.

The number of created buckets is based on the number
of distinct bitmap representations of the data items which
may lie between 1 where all the data items have the same
bitmap representation and 2m – 1 where m is the number
of dimensions in which all distinct bitmap representations
are possible. For instance, if m = 3, then the number of
created buckets is 1 if all the data items have the same bitmap
representation, else if all distinct bitmap representations are
possible then 7 buckets are created (001, 010, 011, 100, 101,
110, 111). Note that the bitmap representation 000 for the
above example will not occur as it represents data items with
missing values in all dimensions which are impossible. The
number of data items in the whole buckets is equal to the
number of data items in the initial incomplete database, DI ,

i.e. n =
s∑
i=1

bi where n is the number of data items in DI , s is

the number of buckets, and bi is the number of data items in
the ith bucket, Bi. This ensures that no data items are missing
during this process.
Bucket Skyline Identifier (BSI) – After the data items have

been grouped into the appropriate buckets based on their
bitmap representations, then pairwise comparisons are per-
formed on each bucket to derive the skylines of the bucket.
We use the term intra-bucket comparisons to mean pairwise
comparisons that are performed between data items in the
same bucket. Note that the Definition 2 Comparable and
Definition 3 Dominance Relationship are applied here. The
skylines derived at this stage are the potential candidate

skylines. The Bucket Skyline Identifier (BSI) component has
two main aims that are:

1) To derive the bucket skylines of each bucket by per-
forming the intra-bucket comparisons. These bucket
skylines are kept in the Bucket Skyline (BS).

2) To keep track of the dominance relationships, a list
called the Domination History (DH) is created. The
structure of the DH is as follows: DH=<Dominating,
Dominated> where Dominating indicates the data
items that dominate other data items while Dominated
indicates the data items that are dominated by other data
items. For instance, if pi � pj, then pi is the dominating
data item while pj is the dominated data item.

Fig. 5 shows the Bucket Skyline Identifier (BSI) algorithm
which is embedded into the Bucket Skyline Identifier (BSI)
component. It aims at deriving the bucket skylines for each
bucket. It starts by analysing each bucket, Bk (step 2). The
data item pi of a bucket, Bk , is then compared to another
data item, pj, of the same bucket where the dominance rela-
tionship among them is identified based on the Definition 3
Dominance Relationship (step 4). In regard to theDefinition 2
Comparable, these data items are comparable as they have
the same bitmap representation. If the data item pi dominates
the data item pj, pi � pj, then pi will be inserted into the
Bucket Skyline, BSk (step 6) while pj that is dominated by pi
is removed from the bucket, Bk (step 7). We use the notation

FIGURE 5. The Bucket Skyline Identifier (BSI) algorithm.

141530 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

BSk to represent the Bucket Skyline of the bucket Bk . If the
dominated data item pj already exists in BSk , then the data
item pj is removed from BSk (steps 8 – 9). Both pi and pj
are then inserted into the Domination History (DH) (step 10)
where pi is the dominating data item and pj is the dominated
data item. However, if the data item pj dominates the data item
pi, pj � pi, then pj will be inserted into the Bucket Skyline,
BSk (steps 13 –15) while pi that is dominated by pj is removed
from the bucket, Bk (step 16). If the dominated data item pi
already exists in BSk then the data item pi is removed from
BSk (steps 17 – 18). Both pi and pj are then inserted into
the DH where pj is the dominating data item and pi is the
dominated data item (step 19). However, if pi and pj do not
dominate each other, then both data items are inserted into
BSk (steps 21 – 25).

Based on the buckets that are shown in Fig. 4, the Bucket
Skyline, BSk , created for each bucket, Bk , is as shown in
Fig. 6(a). TheDH created based on the pairwise comparisons
performed on these data items is as shown in Fig. 6(b). For
example, referring to the Bucket 1 of Fig. 4, the data item
w1 dominates the data items w2 and w3. Here, w1, w2 and
w3 are inserted into the DH, the data item w1 is inserted
into the Bucket Skyline, and the data items w2 and w3 are
deleted from the bucket. Next, w1 is compared to w4. Here,
w4 dominates w1 and both w1 and w4 are inserted into the
DH. w4 is inserted into the Bucket Skyline while w1 which
exists in theBucket Skyline is removed from it. Performing the
subsequent comparisons, we noticed that w4 also dominates
the other data items in the Bucket 1, i.e. w5, w6, w7, w8, w9,
and w10. The dominance relationships are kept in the DH as
shown in Fig. 6(b). The same process is applied for buckets 2,
3, and 4.

FIGURE 6. Example of (a) Bucket Skyline (BS) and (b) Domination
History (DH).

Final Skyline Identifier (FSI) – The bucket skylines pro-
duced by the previous component only present the results
of intra-bucket comparisons. Further pairwise comparisons
between the data items from different buckets, i.e. inter-
bucket comparisons, should be performed in order to derive
the final skylines. Since these data items have different
bitmap representations, hence the Definition 6 Revised Bit-
wise and the Definition 7 Dominance Relationship on the
Revised Bitwise are applied here. The dominance relation-
ships need to be kept to be used in the Phase II. The Final
Skyline Identifier (FSI) component performs the following
tasks in deriving the final skylines:

1) Perform the inter-bucket comparisons. The pairwise
comparisons performed at this stage are not straightfor-
ward as intra-bucket comparisons; inter-bucket com-
parisons are performed on the data items with different
bitmap representations. Therefore, before these data
items are compared, it is important to ensure that they
are comparable. Here, the bitmap representations of the
buckets are analysed and if the AND operation of the
bitwise representations produced 0 then these buckets
are not comparable; i.e. the Definition 6 Revised Bit-
wise is applied.

2) Keep track of the dominating and dominated data items.
As the focus of this paper is not only on incomplete
database but also on dynamic database, therefore keep-
ing track of the produced results of this phase to be
used later in the Phase II is important to ensure that the
same processes are not repeated. The data items that
dominate other data items are saved into a list named
Bucket Dominating (BDG). While the data items that
are dominated by other data items are saved into a list
named Bucket Dominated (BDD). In addition, the data
items that are not dominated by other data items are
kept in the BDG. Since the above lists only capture the
dominated data items and the dominating data items
without the associated data items that dominate and
data items that are dominated, respectively, then these
relationships are kept in the Domination History (DH)
to be used in the Phase II.

3) Derive the final skylines. This task derives the final
skylines by comparing the data items in the BDG to
the data items in the BDD. The final skylines are the
data items that appear in the BDG but do not appear
in the BDD, i.e. {S|S ∈ BDG ∧ S /∈ BDD}. This is
because the data item that appears in both lists, i.e.BDG
and BDD, is the data item that has both relationships
dominating and dominated. This means although the
data item dominates another data item but at the same
time it is dominated by the other data items and thus
should not be considered as one of the final skylines.

Fig. 7 presents the Skyline algorithm, which is embedded
into the Final Skyline Identifier (FSI) component. It aims at
deriving the final skylines from the bucket skylines. It starts
by checking the AND operation between the bitmap repre-
sentations of a bucket skyline BSk and another bucket skyline

VOLUME 8, 2020 141531

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 7. The Skyline algorithm.

BSl . If the result of the AND operation is not equal to 0
(step 2) (refer to the Definition 6 Revised Bitwise), then each
data item, pi, of the bucket skyline, BSk , and each data item,
qj, of the bucket skyline, BSl (steps 3 – 4) are compared (refer
to the Definition 7 Dominance Relationship on the Revised
Bitwise). If the data item, pi, dominates the data item, qj,
i.e. pi � qj, then pi is inserted into the BDG while qj is
inserted into the BDD and both pi and qj are inserted into
the DH where pi is the dominating data item and qj is the
dominated data item (steps 6 – 11). Likewise, if the data item,
qj, dominates the data item, pi, i.e. qj � pi, then qj is inserted
into the BDG while pi is inserted into the BDD and qj and pi
are inserted into the DH where qj is the dominating data item
and pi is the dominated data item (steps 12 – 17). However,
if pi and qj do not dominate each other, then both data items
are inserted into the BDG (steps 18 – 22). Next for each data
item pi in the BDG, if it is not a member of the BDD then pi
is identified as one of the final skylines, S (steps 24 – 26).
Based on the bucket skylines, BSi, shown in Fig. 6(a), the

Bucket Dominating (BDG), Bucket Dominated (BDD), and
Domination History (DH) that are generated by the Final
Skyline Identifier (FSI) component are as shown in Fig. 8.
In this example, the data items w4, x1, x3, y2, y9, and z4 are
the bucket skylines of BS1, BS2, BS3, and BS4 as shown in
Fig. 6(a). These bucket skylines are compared to each other.
Here, w4 dominates y2. Thus, w4 is saved into the BDGwhile
y2 is saved into the BDD. Also, x3 dominates w4. Therefore,

FIGURE 8. Example of (a) Domination History (DH), (b) Bucket
Dominating (BDG), and (c) Bucket Dominated (BDD).

x3 is saved into the BDG while w4 is saved into the BDD.
On the other hand, the data item y9 dominates w4, thus, y9
is saved into the BDG. Since w4 already exists in the BDD
no further action is needed. Also, x3 dominates y9. Hence, x3
is saved into the BDG while y9 is saved into the BDD. The
data item z4 dominates w4, y2, and y9 which leads to saving
z4 in the BDG and as w4, y2, and y9 already exist in the BDD
no further action is needed. The bucket skyline x1, does not
dominate any data items and it is not being dominated by
any other data items, hence x1 is saved into the BDG. After
pairwise comparisons between these data items have been
performed, the two lists BDG and BDD are compared and
those data items that appeared in both lists will not appear
in the final skylines while the remaining data items of BDG
are the final skylines. These dominance relationships are kept
in the DH (Fig. 8(a)). Based on this example, w4, y2, and y9
that appeared in both lists are not the final skylines while x1,
x3, and z4 are identified as the final skylines as highlighted
in Fig. 8(c).
Theorem 1: For every data item, pi ∈ DI , not dominated by

other data items, pj ∈ DI , the Skyline algorithm will identify
pi as a skyline.

Proof: Assume a data item pi ∈ DI which is a skyline
but not identified as a skyline by the Skyline algorithm. Based
on the Definition 3 Dominance Relationship, Definition 4
Skylines, and Definition 7 Dominance Relationship on the
Revised Bitwise, pi is a skyline if it is not dominated by other
data items. Hence, if pi is not identified as a skyline by the
Skyline algorithm then there is a data item, say pj ∈ DI ,
that dominates pi. Based on the Skyline algorithm the data
item pj is either (i) a bucket skyline that dominates pi based
on the intra-bucket comparisons (Definition 3 Dominance
Relationship) or (ii) a data item of the BDG, in which pi is

141532 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

dominated by pj based on the inter-bucket comparisons (Def-
inition 7 Dominance Relationship on the Revised Bitwise).
Thus, we have two cases:
Case 1: pj is aBucket Skyline. Bucket skylines are produced

by performing the intra-bucket comparisons. If pj dominates
pi, then based on the Definition 3 Dominance Relationship,
∀dk ∈ d , pj.dk ≥ pi.dk ∧ ∃dl ∈ d , pj.dl > pi.dl hold and pj
is kept in the BS while pi is not. Since pi is a skyline, then pi
is a bucket skyline which is kept in the BS; which contradicts
the earlier statement.�
Case 2: pj is a data item of the BDG. In deriving a

skyline, the inter-bucket comparisons are performed. If pj
dominates pi, then based on the Definition 7 Dominance
Relationship on the Revised Bitwise, ∀dk ∈ d ′, pj.dk ≥
pi.dk ∧∃dl ∈ d ′, pj.dl > pi.dl where d ′ is a set of dimensions
whose revised bitwise representation is 1 hold, pj is inserted
into the BDG while pi is inserted into the BDD. Based on the
Skyline algorithm, the data item which is in the BDD is not
a skyline. As pi is a skyline, thus pi does not appear in the
BDD; which contradicts the earlier statement.

FromCase 1 andCase 2, the assumption that pi is a skyline
but not identified by the Skyline algorithm is invalid. Thus, the
Skyline algorithm identifies all the skylines, S, of DI .

B. PHASE II
Fig. 9 shows the Phase II ofDyIn-Skyline. Three components
have been identified as listed below depending on the type of
modification made towards a database:

(i) Skyline-Insert Identifier (S-II) derives a new set of sky-
lines after a data item(s) is inserted into a database.

(ii) Skyline-Delete Identifier (S-DI) derives a new set of
skylines after an existing data item(s) is deleted from a
database.

(iii) Skyline-Update Identifier (S-UI) produces a new set of
skylines after an existing data item(s) of a database is updated.

These components are to be invoked independently
depending on the type of modify operation and there is no
specific sequence among them. This means that if changes
towards a database are due to a delete operation, then the S-DI
component will be invoked without a necessity to perform
the S-II. Similarly, if a set of mixed operations is to be per-
formed, then each component is invoked according to the

FIGURE 9. The Phase II of DyIn-Skyline.

sequence of the operations in the set. For instance, if the set of
operations begins with an insert operation(s) then followed by
an update operation(s), and lastly with a delete operation(s),
then the following will be invoked in sequence, S-II, S-UI,
and S-DI. The following sections present each of these com-
ponents in detail.
Skyline-Insert Identifier (S-II)– This component derives

a set of skylines when a database is changed due to an insert
operation(s). Instead of performing pairwise comparisons on
the new state of the database, the component identifies the
skylines by analysing the information that has been estab-
lished in the Phase I.
Given an initial incomplete database, DI , a set of skylines

derived from the Phase I, S, and a set of data items to be
inserted D<insert> into the DI , the new state of the database
is written as Dnew = DI

⋃
D<insert>. As explained in Part

A, ¬ S
⋃
S = DI and pairwise comparisons have been per-

formed between the data items of ¬ S
⋃
S to derive S. Given

the D<insert>, it is unwise to perform pairwise comparisons
between all the data items of Dnew, i.e. ¬ S

⋃
S

⋃
D<insert>

as this means performing pairwise comparisons over¬ S
⋃
S

again.
In our work, to derive a set of skylines given the D<insert>,

the BDG generated in the Phase I is utilised. BDG is a list of
data items that is derived from the bucket skylines (BS). The
data items in BDG are the data items that dominate other data
items despite if they are dominated by other data items.While
the data items in S are the data items that are not dominated
by other data items, i.e. S ⊆ BDG. Given a database DI
with m dimensions d = {d1, d2, . . . , dm} and a data item
pi ∈ DI , where pi ∈ BDG and pi /∈ BDD. When a set of data
items, D<insert>, is inserted into DI , there are three cases to
be considered:
Case 1: If a data item pj ∈ D<insert> dominates the data

item pi, then pj has a potential to be a skyline.
Case 2: If the data item pi dominates a data item pj ∈

D<insert>, then pj is not a skyline.
Case 3: If the data items pi and pj ∈ D<insert> do not

dominate each other, then both pi and pj have a potential to
be a skyline.

These cases are visualised in Fig. 10.
Fig. 11 presents the subcomponents of the Skyline-Insert

Identifier (S-II). The subcomponents are Data Grouping
Builder (DGB), Bucket Skyline Identifier (BSI), Candidate
Skyline Identifier (CSI), and Final Skyline Identifier (FSI).
These subcomponents are explained in details in the follow-
ing paragraphs. Meanwhile, Fig. 12 shows a sample of data
items to be inserted, D<insert>, into the database, DI . We will
use this sample as an example to clarify the steps of each
subcomponent of the S-II.
Data Grouping Builder (DGB) – This subcomponent

groups the data items into buckets based on the bitmap
representation of the data items. It uses the same approach
and applies the Data Grouping Builder (DGB) algorithm
presented in Fig. 3. Thus, we will not further elaborate this
subcomponent. Based on the D<insert> given in Fig. 12 and

VOLUME 8, 2020 141533

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 10. The three cases of D<insert>.

FIGURE 11. The subcomponents of the Skyline-Insert Identifier (S-II).

FIGURE 12. Example of D<insert>.

applying the DGB algorithm, four buckets are produced as
shown in Fig. 13. Each bucket contains the data items with
the same bitmap representation. For example, Bucket 1 with
bitmap representation 0111 has data items of D<insert> with
missing values in the first dimension, d1.

FIGURE 13. The results of the Data Grouping Builder (DGB) based on
D<insert>.

Bucket Skyline Identifier (BSI) – Similar to the Bucket
Skyline Identifier (BSI) component presented in Part A, the
subcomponent Bucket Skyline Identifier (BSI) in this phase
aims at deriving the bucket skylines of each bucket and keep-
ing track of the list of dominating dan dominated data items
in the Domination History (DH). It uses the same approach
and applies the Bucket Skyline Identifier (BSI) algorithm
presented in Fig. 5. Thus, we will not further elaborate this
subcomponent. Based on the buckets produced in Fig. 13 and
applying the BSI algorithm, the bucket skylines of each
bucket are saved into the Temp Bucket Skyline (TBS) as shown
in Fig. 14 while theDH created during the process of pairwise
comparisons is presented in Fig. 15(a).

FIGURE 14. Temp Bucket Skyline (TBS).

Candidate Skyline Identifier (CSI) – This subcomponent
performs similar tasks as the Final Skyline Identifier (FSI)
component presented in Part A. Three tasks are performed
that are: (i) performing the inter-bucket comparisons, (ii)
keeping track of the dominating and dominated data items,
and (iii) deriving the candidate skylines.

Based on the bucket skylines, TBSi, that are shown in
Fig. 14, the Temp Bucket Dominating (TBDG), Temp Bucket
Dominated (TBDD), and Domination History (DH) that are
generated by the Candidate Skyline Identifier (CSI) subcom-
ponent are as shown in Fig. 15. The characteristic and the

141534 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 15. (a) Domination History (DH), (b) Temp Bucket Dominating
(TBDG), and (c) Temp Bucket Dominated (TBDD).

process of producing the TBDG, TBDD are the same as the
BDG and BDD presented in Part A but the only difference
is that the TBDG and TBDD are produced based on the
inserted data items, D<insert>. The aim of having the TBDG
and TBDD lists is to hasten the process of identifying the
candidate skylines of D<insert>. We do not append the results
of dominance relationships produced in this step into the
existing BDG and BDD although both lists have the same role
as the TBDG and TBDD, as doing this will incur unnecessary
comparisons between the data items of BDG and BDD. These
comparisons have been performed in the Phase I when the set
of skylines is derived. However, once the candidate skylines
have been identified, i.e. those data items that are listed in the
TBDG but not in the TBDD, the contents of TBDG and TBDD
are emptied, ready to be used by the next modify operation,
if any.
Final Skyline Identifier (FSI) – This subcomponent derives

the set of skylines by comparing the data items of BDG
against the data items of Candidate Skyline (CS) pro-
duced in the previous step. The BDG is derived in the
Phase I. Fig. 16 depicts the Skyline Insert (SI) algorithm,
which is embedded into the Final Skyline Identifier (FSI)

FIGURE 16. The Skyline Insert (SI) algorithm.

subcomponent. It aims at deriving the set of skylines, S. The
SI algorithm has similar steps to the Skyline algorithm shown
in Fig. 7 and explained in the Part A. The difference between
these two algorithms is the inputs to the SI algorithm are the
list of candidate skylines derived by the Candidate Skyline
Identifier (CSI) subcomponent and the BDG and BDD lists.
Fig. 15(b) shows the CS which is derived by the CSI

subcomponent. It contains two data items that are w12 and
x13. These two data items are compared to the data items of
BDG that are w4, x1, x3, z4, and y9 as shown in Fig. 8(b).
Here, w12 dominates w4, z4, and x1; x3 dominates x13 while
x13 dominates w4. This will result in w12 and x13 being
saved into the BDG while x1 and x13 are saved into the
BDD. These dominance relationships are saved into the DH.
Figs 17(a), (b), and (c) present the updated DH, BDG, and
BDD, respectively. The set of skylines are derived based on
the updated BDD and BDG by excluding the common data
items that appeared in both the BDG and BDD. The set of
skylines, S, for this example is S = {w12, x3} as highlighted
in Fig. 17(b).
Theorem 2: If the data item pi ∈ Dnew is a skyline, then pi

is derived as a skyline by the Skyline Insert (SI) algorithm.
Proof: Assume that pi is a skyline of Dnew, but pi is not

identified as a skyline by the SI algorithm. The data item pi is
not a skyline if it is dominated by other data items, pj ∈ Dnew,

VOLUME 8, 2020 141535

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 17. (a) Domination History (DH), (b) Bucket Dominating (BDG),
and (c) Bucket Dominated (BDD).

either during the intra-bucket or inter-bucket comparisons.
Thus, we have two cases:
Case 1: Assume that pi is not a skyline and pi is dominated

by a data item say pj ∈ D<insert> during the intra-bucket com-
parisons, i.e. pi ∈ D<insert>. According to the Definition 3
Dominance Relationship, ∀dk ∈ d , pj.dk ≥ pi.dk ∧ ∃dl ∈ d ,
pj.dl > pi.dl . However, based on the Definition 4 Skylines,
if pi is a skyline, then pi is not dominated by pj, which
contradicts the earlier statement.�
Case 2: Assume that pi is not a skyline and pi is dominated

by a data item say pj ∈D<insert> during the inter-bucket com-
parisons. Thus, either pj ∈ CS or pj ∈ BDG. According to the
Definition 7Dominance Relationship on the Revised Bitwise,
∀dk ∈ d ′, pj.dk ≥ pi.dk ∧ ∃dl ∈ d ′, pj.dl > pi.dl where d ′ is
a set of dimensions whose revised bitwise representation is 1.
However, based on theDefinition 4 Skylines, if pi is a skyline,
then pi is not dominated by pj, which contradicts the earlier
statement.�

FromCase 1 andCase 2, the assumption that pi is a skyline
but not identified by the SI algorithm is invalid. Hence, the SI
algorithm derives all the skylines, S, of Dnew.

Skyline-Delete Identifier (S-DI)– This component derives
a set of skylines when a database is changed due to a delete
operation(s). Instead of performing pairwise comparisons on
the new state of a database, the component identifies the
set of skylines by analysing the information that has been
established in the Phase I.
Given the initial incomplete database, DI , the set of sky-

lines derived from the Phase I, S, and a set of data items to be
deleted D<delete> from the DI , the new state of the database
is written as Dnew = DI –D<delete>. This means Dnew ⊂ DI
and DI = Dnew

⋃
D<delete>. As explained in Part A, DI = ¬

S
⋃
S which also means thatDI = Dnew

⋃
D<delete>. Hence,

pairwise comparisons have been performed between the data
items of ¬ S

⋃
S or Dnew

⋃
D<delete> to derive S. Given

the D<delete>, it is unwise to perform pairwise comparisons
between all the data items of Dnew, i.e. ¬ S

⋃
S – D<delete>,

as this means performing pairwise comparisons over ¬ S
⋃

S – D<delete> again.
In our work, to derive a set of skylines, S, given the

D<delete>, the recent DH generated by the previous process
is utilised. DH is the list of dominated and dominating data
items, which keeps track of the dominance relationships. The
data items which are dominated by the data items inD<delete>
are examined. Given a database DI with m dimensions d =
{d1, d2, . . . , dm} and a data item, pi ∈ DI . When a set of
data items, D<delete>, is deleted from DI , if the data item
pi ∈ D<delete>, there are two cases to be considered:
Case 1: If pi ∈ BDG and pi /∈ BDD, i.e. pi is a skyline of

DI , and pi dominates a data item pj ∈ DI while pj /∈ D<delete>
then pj has a potential to be a skyline.
Case 2: If pi is not a skyline of DI and is dominated by a

data item pj ∈ DI while pj /∈ D<delete> then pj has a potential
to be a skyline.
These cases are visualised in Fig. 18.

FIGURE 18. The two cases of D<delete>.

Fig. 19 presents the subcomponents of the Skyline-Delete
Identifier (S-DI). The subcomponents are Dominated Data
Items Analyser (DDIA) and Final Skyline Identifier (FSI).
These subcomponents are explained in details in the follow-
ing subsections.

141536 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 19. The subcomponents of the Skyline-Delete Identifier (S-DI).

Fig. 20 shows a sample of data items to be deleted,
D<delete>, from the database, DI . We will use this sample as
an example to clarify the steps of each subcomponent of S-DI.

FIGURE 20. Example of D<delete>.

Dominated Data Items Analyser (DDIA) – As explained
above, the effect of deleting a data item will affect the present
skylines. This is due to the fact that the data items dominated
by the deleted data items have chances to be skylines. The
aim of this subcomponent is to identify these dominated
data items and perform pairwise comparisons between them
instead of analysing the entire database to avoid unnecessary
skyline computations, i.e. to reduce the number of pairwise
comparisons to be performed. In our work, the Domination
History (DH) is analysed to identify the dominated data items.
Since the data items that are dominated by the deleted data
items have the potential to be skylines, thus these data items
are saved into a temporary list calledCD. The data items to be
deleted are then removed from the database, BDD, BDG, and
DH. The data items that are in the CD are compared to each
other. The data items that dominate other data items are stored
in the TBDG while the dominated data items are removed
from theCD and saved into the TBDD. The TBDD and TBDG
are used by the next subcomponent.

Fig. 21 presents the Restore algorithm which is embedded
into the Dominated Data Items Analyser (DDIA) subcompo-
nent. It aims at identifying the data items that have potential to
be skylines when some data items are deleted from a database.
It starts by analysing each data item to be deleted pi (step 2).
It also analyses theDH to identify the list of data items, L, that
are dominated by pi (step 3) which are then saved into the CD
(step 4). The data item pi is then removed from the database,
DH, BDD, and BDG (steps 5 –7). The data items saved in
the CD are then compared to each other. If qi dominates qj,
qi � qj, then qi is inserted into the TBDG and DH while qj
is removed from the CD and inserted into the TBDD and DH

FIGURE 21. The Restore algorithm.

(steps 11 – 17). Likewise, if qj dominates qi, qj � qi, then qj
is inserted into the TBDG and DH while qi is removed from
the CD and inserted into the TBDD and DH (steps 18 – 24).

Assume that we want to delete the data items w4, z4, and x1
as shown in Fig. 20 from the initial database, DI . The DH is
checked to identify the data items that are dominated by w4,
z4, and x1. Based on theDH, the data items that are dominated
by w4 are w1, w5, w6,w7, w8, w9,w10, and y2; the data items
that are dominated by z4 are z3, z5, z6, z7, z8, z9, z10, y9, y2,
and w4; while the data items that are dominated by x1 are
x2, x4, x5, x6, x7, x8, x9, x10, and y2. These data items that are
dominated and not in the list of deleted data items are saved in
the CD as shown in Fig. 23(a). w4, z4, and x1 are then deleted
from the DH, BDG, BDD, and skyline, S. The updated DH
and BDG are shown in Figs 22(a) and 22(b), respectively. The
data items in CD are then compared to each other. The data
items that are dominated are removed from theCD, i.e. all the
data items in the CD except for x7 and z3. Those data items
that dominate other data items which arew8,w9, y2, x7, x8, z8,
and, z3 are saved in the TBDG as shown in Fig. 23(b) while
the dominated data items are saved in the TBDD as shown
in Fig. 23(c).
Final Skyline Identifier (FSI) – This subcomponent identi-

fies the set of skylines when data items are deleted from the
database. This is done by performing pairwise comparisons
between the data items in the CD and BDG. Fig. 24 presents
the steps of the Skyline Delete (SD) algorithm, which aims
at deriving a set of skylines, S, given a set of data items to

VOLUME 8, 2020 141537

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 22. Updated (a) Domination History (DH) and (b) Bucket
Dominating (BDG).

FIGURE 23. (a) The Candidate Data Items, (b) Temp Bucket Dominating
(TBDG), and (c) Temp Bucket Dominated (TBDD).

be deleted, D<delete> from the database DI . The algorithm
starts by analysing the data items pi of CD and qj of BDG
(steps 2 – 3). If the data item, pi, dominates the data item, qj,
pi � qj, then pi is inserted into the BDG and DH while qj is
inserted into the BDD and DH (steps 5 – 10). Likewise, if the
data item, qj, dominates the data item, pi, qj � pi, then qj is
inserted into the BDG and DH while pi is inserted into the
BDD and DH (steps 12 – 17). However, if pi and qj do not
dominate each other, then both data items are inserted into
the BDG (steps 19 – 23). Then the TBDG list is merged with
the BDG while the TBDD with the BDD (steps 25– 26). Next
for each data item pi in BDG if it is not a member of BDD,
then pi is inserted into the skylines, S (steps 27 – 29).

The running example for the Skyline Delete (SD) algorithm
is shown in Fig. 25. The data items in the updated CD
shown in Fig. 23(a) (data items that are being highlighted) are

FIGURE 24. The Skyline Delete (SD) algorithm.

compared to the data items in BDG presented in Fig. 22(b).
After comparing the data items, the updated BDG and BDD
are as shown in Figs 25(b) and 25(c), respectively. The set of
skylines for this example after deleting the data items w4, z4,
and x1 is S = {x3, x7, z3}.
Theorem 3: If the data item pi ∈Dnew is a skyline, then pi is

identified as a skyline by the Skyline Delete (SD) algorithm.
Proof: Assume that pi is a skyline of Dnew, but pi is not

identified as a skyline by the SD algorithm. The data item pi is
not a skyline if it is dominated by other data items, pj ∈ Dnew.
Three cases need to be considered as follows:
Case 1: If pi is a skyline of Dnew, then pi ∈ BDG and pi /∈

BDD as presented in steps 27 – 29 of the SD algorithm. Based
on Definition 3 Dominance Relationship, ∀dk ∈ d , pj.dk ≥
pi.dk ∧ ∃dl ∈ d , pj.dl > pi.dl , which implies that pj ∈ BDG
and pj /∈ BDD while pi ∈ BDD which contradicts with the
earlier statement.�
Case 2: If pi is a skyline of Dnew, then pi ∈ Bucket Skyline.

Based on Definition 3 Dominance Relationship, ∀dk ∈ d ,
pj.dk ≥ pi.dk ∧ ∃dl ∈ d, pj.dl > pi.dl and steps 27 – 29 of
the SD algorithm, pj ∈ BDG and pj /∈ BDD while pi ∈
BDD. Since pi ∈ BDD and based on steps 27 – 29 of the
SD algorithm pi is not a skyline which contradicts with the
earlier statement.�

141538 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 25. (a) Updated Domination History (DH) (b) Bucket Dominating
(BDG), and (c) Bucket Dominated (BDD).

Case 3: Assume that pj ∈CD, based on steps 2 – 3 of the SD
algorithm, pj is compared to each data item of BDG, in which
pj ∈ BDG as it dominates pi and pi ∈ BDD, hence pi is not a
skyline which contradicts with the earlier statement.�

From the above cases, the assumption that pi is a skyline
but is not derived by the SD algorithm is invalid. Hence, SD
algorithm derives all the skylines, S of Dnew.
Skyline-Update Identifier (S-UI)– This component

derives a set of skylines when a database is changed due to
an update operation(s). An update operation in our work is
achieved by performing a delete operation followed by an
insert operation. Hence, the component S-DI is performed
followed by the component S-II as explained earlier. In other
words, The components S-DI and S-II are part of the S-UI as
shown in Fig. 26.

FIGURE 26. The subcomponents of the Skyline-Update Identifier (S-UI).

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTINGS
To fairly evaluate the performance and prove the efficiency
of our proposed solution, DyIn-Skyline, in processing skyline
queries over a dynamic and incomplete database, several

extensive experiments are designed. These experiments are
conducted on Intel Core i7 3.6GHz processor with 32GB of
RAM and Windows 8 professional. The implementation of
DyIn-Skyline was done in VB.NET 2013. Since this study is
the first attempt that investigates the issues of deriving sky-
lines in a dynamic and incomplete database, thus we compare
our proposed solution to other existing works that are the
closest to this research, namely: ISkyline [23], SIDS [27], and
Incoskyline [2]. These algorithms are mainly designed to deal
with the issue of incompleteness of data in a database. [23]
has clearly stated in his work that to derive a set of skylines
when new data items are inserted into a database, would
require the ISkyline algorithm to be run over the new state
of the database, i.e. the entire database needs to be analysed.

In conducting the experiment, we first run each of the
algorithms, namely: ISkyline, SIDS, and Incoskyline over the
initial incomplete database and derive a set of skylines, Sp.
When the database changes its states, we run again each of the
above algorithms over the new state of the database and derive
a new set of skylines, S ′p. While for our proposed solution,
we first run the Phase I of DyIn-Skyline solution over the
initial incomplete database and derive a set of skylines, S.
When the database changes its states, depending on the type
of modification made, we run the Phase II to derive a set of
skylines, S ′. We compare the set of skylines, S (S ′), produced
by our proposed solution against the set of skylines produced
by the previous algorithms, Sp (S ′p, respectively), to validate
the correctness of our proposed solution. Intuitively, S and Sp
as well as S ′ and S ′p should produce the same set of skylines.
Two types of data sets are used in the experiments,

namely: synthetic and real data sets. Table 4 presents the
parameter settings for the synthetic and real data sets.
The real data sets, namely: NBA, MovieLens, and stock
market, are the data sets mostly used by the previous
works [2], [5], [20], [22], [23], [27], [28]. Each experiment
is run 10 times and we report the average value of these runs.
In deriving the set of skylines, we assume that greater values
are preferable compared to lesser ones. The performance
measurements used in our experiments are number of pair-
wise comparisons and processing time as they are the most
commonly used measurements in evaluating the performance
of skyline algorithms [2], [23], [27]. These measurements
are evaluated on different parameter settings that are data
set size, number of dimensions, number of dimensions with
missing values, and changing rate. The initial sizes of the
NBA, stock market, andMovieLens data sets are 120K, 500K,
and 1200K, respectively. As shown in Table 4, the size of
these data sets including the synthetic data set is varied with
40K as the minimum size (NBA) and 1200K as the maximum
size (MovieLens). The initial numbers of dimensions forNBA,
stock market, and MovieLens data sets are 13, 16, and 4,
respectively. In some experiments, this parameter is varied
as shown in Table 4. We have also varied the number of
dimensions with missing values, with minimum 1 dimension
(MovieLens) and maximum 6 dimensions (synthetic, NBA,
stock market). The incompleteness rate is fixed to 20% but the

VOLUME 8, 2020 141539

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

TABLE 4. The parameter settings of the synthetic and real data sets.

size of the data with incomplete values varied, for example
if the size of the data set is 40K, thus 20% from 20K =
4K is incomplete while 20% from 1200K = 240K; which
gives a different size of incompleteness of data. Changing rate
reflects how much of changes is made towards a data set. For
instance, 20% changing rate indicates the amount of changes
made based on the size of the data set. The changes to bemade
towards a data set are randomly selected among the insert,
delete, and update operations. The bold values in Table 4 are
the default values.

B. THE EXPERIMENTAL RESULTS
This section presents the experimental results of the DyIn-
Skyline solution in processing skyline queries over a dynamic
and incomplete database, in which the changing state of the
database is due to a data manipulation operation(s) (insert,
delete or update a data item(s)). The Phase I of DyIn-
Skyline is run to prepare the initial set of skylines as well as
other necessary information that are captured by the Bucket
Dominating (BDG), Bucket Dominated (BDD), and Domi-
nation History (DH) that keep track of the dominating data
items, dominated data items, and dominance relationships,
respectively. Depending on the type of data manipulation,
the appropriate component of the Phase II is invoked,
namely: Skyline-Insert Identifier (S-II), Skyline-Delete
Identifier (S-DI), and Skyline-Update Identifier (S-UI).
The number of pairwise comparisons and processing time
are measured with different parameter settings as discussed
in Part A and presented in Table 4. These results are compared
to the results of ISkyline [23], SIDS [27], and Incoskyline [2],
based on the synthetic and real data sets.
Effect of Changing Rate– One of the factors that has sig-

nificant effect on the performance of skyline algorithms in
processing skyline queries over a dynamic database is the
changing rate of the database. In this section, we illustrate
the experimental results of our proposed solution and the
previous algorithms for both the synthetic and real data sets
with respect to the number of pairwise comparisons and pro-
cessing time, by varying the changing rate from 5% – 30%
as applied in the previous studies [26], [35] with 20% incom-
pleteness rate. The number of dimensions is fixed to 15, 13, 4,

and 16 for the synthetic, NBA, MovieLens, and stock market
data set, respectively.

Figs 27(a) – (d) present the number of pairwise compar-
isons achieved by the DyIn-Skyline, ISkyline [23], SIDS [27],
and Incoskyline [2], based on the synthetic, NBA,MovieLens,
and stock market data sets, respectively. From these figures,
DyIn-skyline shows a steady performance with changing rate
from 5% to 30%. Also, DyIn-skyline achieved better per-
formance as compared to ISkyline, SIDS, and Incoskyline.
Unlike ISkyline, SIDS, and Incoskyline which derive skylines
over the entire data set after changes are made towards the
data set, i.e. the new state of the data set, DyIn-skyline avoids
unnecessary skyline computations. It relies on the informa-
tion captured in the Phase I. Specifically, the BDG, BDD, and
DH that keep track of the dominating data items, dominated
data items, and dominance relationships, respectively; are
utilised. ISkyline shows the worst performance even when
the changing rate is only 5%. The nearest performance to
DyIn-Skyline is Incoskyline, howeverDyIn-Skyline gained on
average 24% improvement compared to Incoskyline.

FIGURE 27. The results of number of pairwise comparisons with varying
changing rate.

Figs 28(a) – (d) present the processing time achieved by the
DyIn-Skyline, ISkyline [23], SIDS [27], and Incoskyline [2],
based on the synthetic, NBA, MovieLens, and stock mar-
ket data sets, respectively. From these figures, DyIn-skyline
shows a steady performance with various changing rate,
i.e. 5% – 30%. Also, DyIn-skyline attained less processing
time as compared to ISkyline, SIDS, and Incoskyline. Sim-
ilar trends as presented in Figs 27(a) – (d) can be seen in
Figs 28(a) – (d). This is due to the fact that reducing the
number of pairwise comparisons would reduce the processing
time. The number of pairwise comparisons is reduced as the
comparisons are performed between the data items retrieved
from the DH, BDG, and BDD, as well as the data items
inserted/deleted/updated into/from a data set, which is less
than performing comparisons between the data items of the
entire data set.

141540 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 28. The results of processing time with varying changing rate.

Effect of Data Set Size – In this study, we have investigated
the effect of data set size on the performance ofDyIn-Skyline,
which is one of the important factors that has high impact
on the process of deriving skylines. Since the data sets have
different number of dimensions and initial size, thus we use
the following parameter settings: the numbers of dimensions
for synthetic, NBA,MovieLens, and stock market data sets are
fixed to 15, 13, 4, and, 16, respectively; while the incomplete-
ness rate and changing rate are fixed to 20%. The data set
sizes are varied as follows: 50K – 300K for the synthetic data
set, 40K – 120K for the NBA data set, 300K – 1200K for the
MovieLens data set, and 200K – 500K for the stock market
data set.

Figs 29(a) – (d) present the number of pairwise compar-
isons achieved by the DyIn-Skyline, ISkyline [23], SIDS [27],
and Incoskyline [2], based on the synthetic, NBA,MovieLens,
and stock market data sets, respectively. It is apparent that
increasing the size of a data set is achieved by increasing

FIGURE 29. The results of number of pairwise comparisons with varying
data set size.

the number of data items in the data set, thus the number of
pairwise comparisons needed to be performed also increases.
From the figures, it is obvious that varying the size of a data
set does not have a significant impact on the performance of
DyIn-Skylinewhile its performance outperforms the ISkyline,
SIDS, and Incoskyline algorithms. This is because, ISkyline,
SIDS, and Incoskyline algorithms perform pairwise compar-
isons between the data items of the entire data set, even
though if the data items are unaffected by the changes. While,
DyIn-skyline avoids unnecessary skyline computations by
utilising the BDG, BDD, and DH that keep track of the
dominating data items, dominated data items, and dominance
relationships, respectively. DyIn-skyline focuses on the data
items that are affected by the changes made towards the
data set and make pairwise comparisons between them. For
instance, if the data manipulation operation is an insert oper-
ation, then pairwise comparisons are performed between the
inserted data items of the data set, which are then compared
between the data items saved in the DH, BDG, and BDD.
While, if the data manipulation is a delete operation, then
each data item deleted from the data set is analysed to identify
its role, either it is a dominating data item or a dominated data
item to decide on the appropriate pairwise comparison to be
performed. By doing this, DyIn-skyline managed to reduce
the number of pairwise comparisons needed significantly.

Figs 30(a) – (d) present the processing time achieved by the
DyIn-Skyline, ISkyline [23], SIDS [27], and Incoskyline [2],
based on the synthetic, NBA, MovieLens, and stock mar-
ket data sets, respectively. From these figures, DyIn-skyline
shows a steady performance with varying sizes of data sets.
Also, DyIn-skyline achieved less processing time as com-
pared to ISkyline, SIDS, and Incoskyline. Similar trends as
presented in Figs 29(a) – (d) can be seen in Figs 30(a) – (d).
This is due to the fact that reducing the number of pair-
wise comparisons would reduce the processing time. The
number of pairwise comparisons is reduced as the com-
parisons are performed between the data items retrieved

FIGURE 30. The results of processing time with varying data set size.

VOLUME 8, 2020 141541

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

from the DH, BDG, and BDD, as well as the data items
inserted/deleted/updated into/from a data set, which is less
than performing comparisons between the data items of the
entire data set. For both performancemeasurements, i.e. num-
ber of pairwise comparisons and processing time, ISkyline
shows the worst performance. The nearest performance to
DyIn-Skyline is Incoskyline.
Effect of Data Dimensionality – Besides changing rate and

data set size, data dimensionality is also one of the factors
that has significant effect on the performance of skyline algo-
rithms in processing skyline queries. In this section, we illus-
trate the experimental results of our proposed solution and
the previous algorithms, for both the synthetic and real data
sets with respect to the number of pairwise comparisons and
processing time. Since the data sets have different number of
dimensions and initial size, thus we use the following param-
eter settings: the data set size for synthetic, NBA,MovieLens,
and stock market data sets is fixed to 300K, 120K, 1200K,
and, 500K, respectively; while the incompleteness rate and
changing rate are fixed to 20%. The numbers of dimensions
are varied as follows: 3 – 15 dimensions for the synthetic data
set, 5 – 13 dimensions for the NBA data set, 2 – 4 dimensions
for the MovieLens data set, and 5 – 16 dimensions for the
stock market data set.
Comparing the results of number of pairwise comparisons

presented in Figs 31(a) – (d), reveals that the performance
of our proposed approach, DyIn-skyline, is better than the
performance of ISkyline, SIDS, and Incoskyline algorithms
for both the synthetic and real data sets. In fact, DyIn-skyline
shows a steady performance even when the number of dimen-
sions is increased, while a slight increment in number of
pairwise comparisons can be seen in the other algorithms.
Similar explanation given in the previous sections, applies
here. Intuitively, ISkyline, SIDS, and Incoskyline algorithms
perform pairwise comparisons between the data items of the
entire data set, even though the data items are not affected by

FIGURE 31. The results of number of pairwise comparisons with varying
number of dimensions.

the changes. While, DyIn-skyline avoids unnecessary skyline
computations by utilising the BDG, BDD, and DH, that keep
track of the dominating data items, dominated data items, and
dominance relationships, respectively. DyIn-skyline focuses
on the data items that are affected by the changes made
towards the data set and make pairwise comparisons between
them. By doing this, DyIn-skyline managed to reduce the
number of pairwise comparisons needed significantly.

Figs 32(a) – (d) present the processing time achieved
by the DyIn-Skyline, ISkyline [23], SIDS [27], and Incosky-
line [2], based on the synthetic, NBA, MovieLens, and stock
market data sets, respectively. From these figures, DyIn-
skyline shows a steady performance with varying number
of dimensions. Also, DyIn-skyline achieved less processing
time as compared to ISkyline, SIDS, and Incoskyline. Sim-
ilar trends as presented in Figs 31(a) – (d) can be seen in
Figs 32(a) – (d). This is due to the fact that reducing the
number of pairwise comparisons would reduce the processing
time. The number of pairwise comparisons is reduced as the
comparisons are performed between the data items retrieved
from the DH, BDG, and BDD, as well as the data items
inserted/deleted/updated into/from a data set, which is less
than performing comparisons between the data items of the
entire data set. Similar to the other factors, ISkyline shows
the worst performance with regard to both the number of
pairwise comparisons and processing time, while the nearest
performance to DyIn-Skyline is Incoskyline.

FIGURE 32. The results of processing time with varying number of
dimensions.

Effect of Number of Dimensions with Missing Values –
Since, incompleteness of data is one of the issues tackle
by this study, thus investigating the performance of DyIn-
Skyline in processing skyline queries with various number of
dimensions with missing values is inevitable. In this section,
we illustrate the experimental results of our proposed solution
and the previous algorithms, for both the synthetic and real
data sets with respect to the number of pairwise comparisons
and processing time, by varying the number of dimensions

141542 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

with missing values as follows: 3 – 6 dimensions for the
synthetic,NBA, and stock market data sets, while 1 – 2 dimen-
sions for the MovieLens data set, with changing rate and
incompleteness rate fixed to 20%. The numbers of dimen-
sions are fixed to 15, 13, 4, and 16 for the synthetic, NBA,
MovieLens, and stock market data set, respectively.
Figs 33(a) – (d) present the number of pairwise compar-

isons achieved by the DyIn-Skyline, ISkyline [23], SIDS [27],
and Incoskyline [2], based on the synthetic, NBA,MovieLens,
and stock market data sets, respectively. From these figures,
it is obvious that DyIn-skyline shows a steady performance
which reflects that the number of dimensions with missing
values has no significant impact on the performance of DyIn-
skyline. When the number of dimensions with missing values
increases, the number of pairwise comparisons performed
decreases, as reflected in the results of all the algorithms.
Although the reduction shown by DyIn-skyline is small but
DyIn-skyline achieved better performance as compared to
ISkyline, SIDS, and Incoskyline, since it avoids unnecessary
skyline computations by utilising the information captured in
theBDG,BDD, andDH that keep track of the dominating data
items, dominated data items, and dominance relationships,
respectively.

FIGURE 33. The results of number of pairwise comparisons with varying
number of dimensions with missing values.

Figs 34(a) – (d) present the processing time achieved by the
DyIn-Skyline, ISkyline [23], SIDS [27], and Incoskyline [2],
based on the synthetic, NBA, MovieLens, and stock mar-
ket data sets, respectively. From these figures, DyIn-skyline
shows a steady performance with varying number of dimen-
sions with missing values. Also, DyIn-skyline gained less
processing time as compared to ISkyline, SIDS, and Incosky-
line. Similar trends as presented in Figs 33(a) – (d) can be
seen in Figs 34(a) – (d). This is due to the fact that reducing
the number of pairwise comparisons would reduce the pro-
cessing time. When the number of dimensions with missing
values increases, the number of pairwise comparisons per-
formed decreases and consequently the processing time also

FIGURE 34. The results of processing time with varying number of
dimensions with missing values.

decreases, as reflected in the results of all the algorithms.
However, the processing time achieved by DyIn-skyline is
always lesser than the other algorithms since comparisons in
DyIn-skyline are performed between the data items retrieved
from the DH, BDG, and BDD, as well as the data items
inserted/deleted/updated into/from a data set, which is less
than performing comparisons between the data items of the
entire data set. Both sets of Figs 33 and 34 clearly depict that
the worst performance with regard to the number of pairwise
comparisons and processing time is shown by ISkyline, while
the nearest performance to DyIn-Skyline is Incoskyline.
Effect of Continuous Insertions – In this study, we have

investigated the effect of continuous insertions on the per-
formance of DyIn-Skyline and the capability of DyIn-Skyline
in handling huge data set. In this section, we illustrate the
experimental results of our proposed solution, DyIn-Skyline,
on the synthetic data set with respect to the number of pair-
wise comparisons, processing time, andmemory usage. Here,
the incompleteness rate is fixed to 20% while the number
of dimensions is fixed to 10. The initial size of the data set
is 1000K, and we performed 10 sets of insertion operations,
in which each set of insertion operations involves an incre-
ment of 30% of changing rate.

Fig. 35(a) shows the performance of DyIn-Skyline with
regard to the number of pairwise comparisons. It shows
a steady performance with a slight increment between the
iterations of the sets of insertion operations and starts to
increase drastically at the 7th. iteration which reflects a dou-
ble increment compared to the 6th. iteration. At this stage,
the size of the synthetic data set has reached to around 5000K.
The effect of continuous insertion on the processing time of
DyIn-Skyline is shown in Fig. 35(b). Similar trends as shown
in Fig. 35(a) can be seen in Fig. 35(b), in which starting at
the 7th. iteration the processing time starts to show a drastic
increment. Similarly, Fig. 35(c) shows a drastic increment
of memory usage when the size of data set increases due to

VOLUME 8, 2020 141543

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

FIGURE 35. The results of (a) number of pairwise comparisons, (b)
processing time, and (c) memory usage; with continuous insertions.

the continuous insertion of data items, particularly after the
7th. iteration. This is presented by the line DH+BDG+BDD
which denotes the total memory usage of DyIn-Skyline. This
is due to the introduction of three main lists, namely: Domi-
nation History (DH), Bucket Dominating (BDG), and Bucket
Dominated (BDD), that keep track of the domination rela-
tionships, dominating data items, and dominated data items,
respectively. Comparing between these lists, DH consumes
more memory than BDG and BDD as it stores all the domi-
nation relationships between data items in the data set. While
BDG is a list of data items that dominates other data items
regardless if they are being dominated by others consumes
a slightly more memory compared to BDD that only stores
data items that are being dominated. Based on this analysis,
theDyIn-Skyline shows a good performance for data sets with
the size of less than 5000K.
Effect of Number of Buckets – In this study, we have

investigated the effect of number of buckets on the perfor-
mance of DyIn-Skyline. Intuitively, the higher the number
of buckets created implies the higher the number of inter-
bucket comparisons that need to be performed. In this section,
we illustrate the experimental results of our proposed solu-
tion,DyIn-Skyline on the synthetic data set with respect to the
number of pairwise comparisons and processing time. Here,
the incompleteness rate and the changing rate are fixed to
20% while the number of dimensions is fixed to 20, to ensure
that a high number of distinct buckets can be created with
a well-balanced number of data items in each bucket. The
number of buckets is varied from 4 – 35. The initial size of
the data set is 500K.

Fig. 36(a) shows the performance of DyIn-Skyline with
regard to the number of pairwise comparisons. It shows a
steady performance with a slight increment when the number
of buckets is increased. However, the performance of DyIn-
Skyline starts to show a drastic increment when the number of
buckets is 20 until it reaches to 35. Similar trends as shown
in Fig. 36(a) can be seen in Fig. 36(b), in which starting at
20 number of buckets, the processing time starts to show a

FIGURE 36. The results of (a) number of pairwise comparisons and
(b) processing time with varying number of buckets.

drastic increment. This is due to the fact that with the same
amount of data items and various bitmap representations,
more buckets are created with each bucket having small num-
ber of data items. Filtering at the intra-bucket comparisons is
less while more inter-bucket comparisons are performed.
Effect of Changing Rate on the Number of Skylines of

Phase I and Phase II – In this section, we illustrate the
experimental results of our proposed solution, DyIn-Skyline,
on the synthetic data set with respect to the number of skylines
produced by Phase 1 denoted as S and Phase II denoted
as S ′, by varying the changing rate from 5% – 30% with
20% incompleteness rate. The initial size of the synthetic
dataset is 300K and the number of dimensions is fixed to 15.
The experiment was run 10 times and we report the average
value of these runs. Intuitively, there are two cases, namely:
(i) S ′ = S – this indicates that the changes made towards
the data set have no effect on the set of skylines produced in
Phase I as all the skylines in S are also the skylines of S ′;
and (ii) S ′ 6= S – this case is more realistic and it indicates
that the changes made towards the data set effect on the set of
skylines produced in Phase I. Note that S ′ 6= S can either be
(i) S ′ ∩ S = ∅, i.e. some of the skylines produced in Phase I
are also the skylines of Phase II or (ii) S ′ ∩ S = ∅, i.e. none
of the skylines of S are in S ′.

FIGURE 37. The results of number of skylines of Phase I and Phase II.

Fig. 37 shows the results of this experiment, for all of the
runs the number of skylines produced in Phase II is slightly
higher than those produced in Phase I with all runs showing
S ′ 6= S and S ′ ∩ S = ∅.

VI. CONCLUSION
In this paper, we proposed a solution namedDyIn-Skyline that
is capable of deriving skylines over a dynamic and incomplete
database. DyIn-Skyline which consists of two main phases

141544 VOLUME 8, 2020

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

works by utilising the DH, BDG, and BDD that keeps track
of the domination relationships, dominating, and dominated
data items, respectively. A huge amount of pairwise com-
parisons can be avoided as clearly shown by the results
of the experiments. Further enhancement to the proposed
solution can be done by investigating the following area:
(i) Distributed Databases– In our work, we assumed that the
database is centralised and all data items for deriving the set
of skylines are populated into a single table. However, it is
interesting to investigate issues related to data items that are
populated into several distinct databases which are scattered
throughout the network. Apart from the issues as elaborated
in this paper that relate to incompleteness and dynamism
of data of a database, issue of reducing the amount of data
transferred across the network in an attempt to derive a set of
skylines of a distributed database, is worth to be investigated.
(ii) Uncertain Database – another important and interesting
area that can be explored is processing skyline queries in a
dynamic and incomplete of an uncertain database. Skyline
queries in an uncertain database are mainly probabilistic
skylines as the exact values of the data items are not known
during the process of deriving the set of skylines owing to
either the values of the data items are missing or the values of
the data items are in continuous forms (range of values). Thus,
deriving an accurate set of skylines based on the uncertainty
of data is challenging and worth to be investigated. (iii)Cloud
Environment– In a cloud environment, data are massive and
users are charged based on the amount of data transferred via
the cloud environment. These massive data are dynamic and
some of them are with missing information. Thus, handling
massive incomplete and dynamic data over the cloud in deriv-
ing a set of skylines that will benefit the users is another issue
that is worth investigating.

ACKNOWLEDGMENT
All opinions, findings, conclusions and recommendations in
this article are those of the authors and do not necessarily
reflect the views of the funding agencies. The authors would
like to thank the anonymous reviewers for their constructive
comments.

REFERENCES
[1] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘Processing skyline

queries in incomplete distributed databases,’’ J. Intell. Inf. Syst., vol. 48,
no. 2, pp. 399–420, Apr. 2017.

[2] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘An efficient approach
for processing skyline queries in incomplete multidimensional database,’’
Arabian J. Sci. Eng., vol. 41, no. 8, pp. 2927–2943, Aug. 2016.

[3] W. T. Balke and U. Güntzer, ‘‘Multi-objective query processing for
database systems,’’ in Proc. 13th Int. Conf. Very Large Data Bases, 2004,
pp. 936–947.

[4] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
‘‘Finding k-dominant skylines in high dimensional space,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), 2006, pp. 503–514.

[5] C. Y. Chan, H. V. Jagadish, K. L. Tan, and A. K. H. Tung, ‘‘On high dimen-
sional skylines,’’ in Proc. 10th Int. Conf. Extending Database Technol.,
2006, pp. 478–495.

[6] X. W. Cui, L. G. Dong, H. Zou, and X. M. An, ‘‘Finding k-dominant
skyline in dynamic dataset,’’ in Proc. 7th IEEE Int. Conf. Natural Comput.,
May 2011, pp. 1247–1250.

[7] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘Progressive skyline compu-
tation in database systems,’’ ACM Trans. Database Syst., vol. 30, no. 1,
pp. 41–82, Mar. 2005.

[8] D. Kossmann, F. Ramsak, and S. Rost, ‘‘Shooting stars in the sky: An
online algorithm for skyline queries,’’ in Proc. 28th Int. Conf. Very Large
Data Bases (VLDB), 2002, pp. 275–286.

[9] G. B. Dehaki, H. Ibrahim, N. I. Udzir, F. Sidi, and A. A. Alwan, ‘‘Efficient
skyline processing algorithm over dynamic and incomplete database,’’ in
Proc. 20th Int. Conf. Inf. Integr. Web-Based Appl. Services (iiWAS2018),
2018, pp. 190–199.

[10] B. Ilaria, P. Ciaccia, and M. Patella, ‘‘SaLSa: Computing the skyline
without scanning the whole sky,’’ in Proc. 15th ACM Int. Conf. Inf. Knowl.
Manage. (ICIKM), 2006, pp. 405–414.

[11] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‘‘Skyline with presort-
ing: Theory and optimizations,’’ Intell. Inf. Syst. J., vol. 31, pp. 595–604,
May 2005.

[12] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‘‘Skyline with presorting,’’
in Proc. 19th Int. Conf. Data Eng. (ICDE), 2003, pp. 717–816.

[13] J. Pei, W. Jin, M. Ester, and Y. Tao, ‘‘Catching the best views of skyline:
A semantic approach based on decisive subspaces,’’ in Proc. 31st Int. Conf.
Very Large Data Bases (VLDB), 2005, pp. 253–264.

[14] J. Lee, H. Im, andG.-W. You, ‘‘Optimizing skyline queries over incomplete
data,’’ Inf. Sci., vols. 361–362, pp. 14–28, Sep. 2016.

[15] J. Lee, G. You, and S. Hwang, ‘‘Personalized top-k skyline queries in high-
dimensional space,’’ Inf. Syst., vol. 34, no. 1, pp. 45–61, 2009.

[16] K. Zhang, H. Gao, X. Han, Z. Cai, and J. Li, ‘‘Probabilistic skyline
on incomplete data,’’ in Proc. ACM Conf. Inf. Knowl. Manage., 2017,
pp. 427–436.

[17] K. Zhang, H. Gao, H. Wang, and J. Li, ‘‘ISSA: Efficient skyline compu-
tation for incomplete data,’’ in Proc. Int. Conf. Database Syst. Adv. Appl.,
2016, pp. 321–328.

[18] K.-L. Tan, E. Pin-Kwang, and C. O. Beng, ‘‘Efficient progressive skyline
computation,’’ in Proc. 27th Int. Conf. Very Large Data Bases (VLDB),
2001, pp. 301–310.

[19] M. L. Yiu and N. Mamoulis, ‘‘Multi-dimensional top-k dominating
queries,’’ VLDB J., vol. 18, no. 3, pp. 695–718, Jun. 2009.

[20] M. L. Yiu and N. Mamoulis, ‘‘Efficient processing of top-k dominating
queries on multi-dimensional data,’’ in Proc. 33rd Int. Conf. Very Large
Data Bases (VLDB), 2007, pp. 483–494.

[21] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, ‘‘Continuous
processing of preference queries in data streams,’’ in Proc. 36th Int. Conf.
Current Trends Theory Pract. Comput. Sci., 2010, pp. 47–60.

[22] M. Morse, J. M. Patel, and W. I. Grosky, ‘‘Efficient continuous skyline
computation,’’ Inf. Sci., vol. 177, no. 17, pp. 3411–3437, Sep. 2007.

[23] E. M. Khalefa, F. M. Mokbel, and J. J. Livandoski, ‘‘Skyline query pro-
cessing for incomplete data,’’ in Proc. 24th Int. Conf. Data Eng. (ICDE),
Apr. 2008, pp. 556–565.

[24] M. Shamsul Arefin, ‘‘Skyline sets queries for incomplete data,’’ Int.
J. Comput. Sci. Inf. Technol., vol. 4, no. 5, pp. 67–80, Oct. 2012.

[25] P. Godfrey, ‘‘Skyline cardinality for relational processing,’’ Found. Inf.
Knowl. Syst., vol. 2942, pp. 78–97, 2005.

[26] P. Wu, D. Agrawal, O. Egecioglu, and A. El Abbadi, ‘‘Deltasky: Optimal
maintenance of skyline deletions without exclusive dominance region gen-
eration,’’ in Proc. IEEE 23rd Int. Conf. Data Eng., Apr. 2007, pp. 486–495.

[27] R. Bharuka and P. Sreenivasa KuMar, ‘‘Finding skylines for incom-
plete data,’’ in Proc. 24th Australas. Database Conf., vol. 137, 2013,
pp. 109–117.

[28] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu,
‘‘Efficient skyline querying with variable user preferences on nominal
attributes,’’ in Proc. 34th Int. Conf. Very Large Data Bases (VLDB), 2008,
pp. 1032–1043.

[29] S. Börzsönyi, D. Kossmann, and K. Stocker, ‘‘The skyline operator,’’ in
Proc. 17th Int. Conf. Data Eng. (ICDE), Apr. 2001, pp. 421–430.

[30] S. Chaudhuri and L. Grava, ‘‘Evaluating top-k selection queries,’’ in Proc.
25th Int. Conf. Very Large Data Bases (VLDB), 1999, pp. 397–410.

[31] X. Miao, Y. Gao, B. Zheng, G. Chen, and H. Cui, ‘‘Top-k dominating
queries on incomplete data,’’ IEEE Trans. Knowl. Data Eng., vol. 28, no. 1,
pp. 252–266, Jan. 2016.

[32] X. Miao, Y. Gao, G. Chen, and T. Zhang, ‘‘k-dominant skyline queries on
incomplete data,’’ Inf. Sci., vols. 367–368, pp. 990–1011, Nov. 2016.

[33] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, ‘‘Efficient
computation of the skyline cube,’’ in Proc. 31st Int. Conf. Very Large Data
Bases (VLDB), 2005, pp. 267–278.

VOLUME 8, 2020 141545

G. B. Dehaki et al.: Efficient Computation of Skyline Queries Over a Dynamic and Incomplete Database

[34] Y. Gulzar, A. A. Alwan, N. Salleh, I. F. A. Shaikhli, and S. I. M. Alvi, ‘‘A
framework for evaluating skyline queries over incomplete data,’’ Procedia
Comput. Sci., vol. 94, pp. 191–198, 2016.

[35] Y. Fang, and C.-Y. Chan, ‘‘Efficient skylinemaintenance for streaming data
with partially-ordered domains,’’ in Proc. Int. Conf. Database Syst. Adv.
Appl., 2010, pp. 322–336.

GHAZALEH BABANEJAD DEHAKI was born
in Tehran, Iran, in March 1981. She received the
bachelor’s degree in the field of software engineer-
ing from the Faculty of Computer Science, Iran
University of Science and Technology, in 2007,
and the master’s degree in knowledge manage-
ment with multimedia from Multimedia Univer-
sity (MMU), Malaysia, specializing in semantic
web ontology and recommender systems. She is
currently pursuing the Ph.D. degree in the field

of database systems with Universiti Putra Malaysia (UPM), specializing in
preference query in dynamic and incomplete database systems.

HAMIDAH IBRAHIM received the Ph.D. degree
in computer science from the University of Wales,
Cardiff, U.K., in 1998. She is currently a Full
Professor with the Faculty of Computer Science
and Information Technology, Universiti Putra
Malaysia (UPM). Her current research interests
include databases (distributed, parallel, mobile,
biomedical, and XML) focusing on issues related
to integrity maintenance/checking, ontology/
schema/data integration, ontology/schema/data

mapping, cache management, access control, data security, transaction
processing, query optimization, query reformulation, preference evaluation–
context-aware, information extraction, and concurrency control; and data
management in mobile, grid, and cloud.

FATIMAH SIDI received the Ph.D. degree
in management information system from Univer-
siti Putra Malaysia (UPM), Malaysia, in 2008.
She is currently working as an Associate Pro-
fessor in the discipline of computer science with
the Department of Computer Science, Faculty
of Computer Science and Information Technol-
ogy, UPM. Her current research interests include
knowledge and information management systems,
data and knowledge engineering, database, and
data warehouse.

NUR IZURA UDZIR received the Bachelor
of Computer Science and Master of Science
degrees from Universiti Putra Malaysia (UPM),
in 1996 and 1998, respectively, and the Ph.D.
degree in computer science from the University
of York, U.K., in 2006. She is currently an Asso-
ciate Professor with the Faculty of Computer Sci-
ence and Information Technology, UPM, since
1998. Her research interests include access con-
trol, secure operating systems, intrusion detection

systems, coordination models and languages, and distributed systems. She is
a member of the IEEE Computer Society.

ALI A. ALWAN received the Master of Computer
Science degree and the Ph.D. degree in computer
science from Universiti Putra Malaysia (UPM),
Malaysia, in 2009 and 2013, respectively. He is
currently an Assistant Professor with the Kul-
liyyah (Faculty) of Information and Communica-
tion Technology, International Islamic University
Malaysia (IIUM), Malaysia. His research interests
include preference queries, skyline queries, proba-
bilistic and uncertain databases, query processing,

and optimization and management of incomplete data, data integration,
location-based social networks (LBSN), recommendation systems, and data
management in cloud computing.

YONIS GULZAR received the master’s degree
in computer science from Bangalore University,
India, in 2013, and the Ph.D. degree in computer
science from International Islamic University
Malaysia, in 2018. He was a part-time Lec-
turer, a Teaching Assistant, and a Research Assis-
tant with the Department of Computer Science,
International Islamic University Malaysia. He is
currently an Assistant Professor with King Faisal
University (KFU), Saudi Arabia. His research

interests include preference queries, skyline queries, probabilistic and uncer-
tain databases, query processing, and optimization and management of
incomplete data, data integration, location-based social networks (LBSN),
recommendation systems, and data management in cloud computing.

141546 VOLUME 8, 2020

