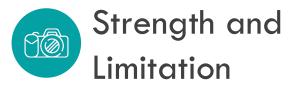
### α-ADDUCIN METHYLATION AND BLOOD PRESSURE IN YOUNG ADULTS | Less is More

WAN FATEIN NABEILA WAN OMAR<sup>1</sup>, NORLELAWATI A. TALIB<sup>2</sup>, JAMALLUDIN AB. RAHMAN<sup>3</sup>, AZARISMAN SHAH MOHD SHAH<sup>4</sup>, ASZRIN ABDULLAH<sup>1</sup>.

> <sup>1</sup>Dept of Basic Medical Sciences | <sup>2</sup>Dept of Pathology and Laboratory Medicine | <sup>3</sup>Dept of Community Medicine | <sup>4</sup>Dept of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia





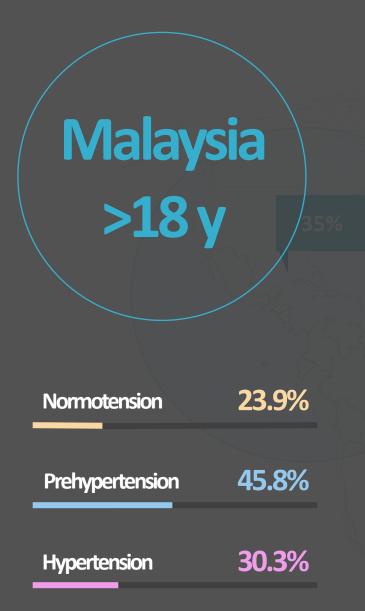








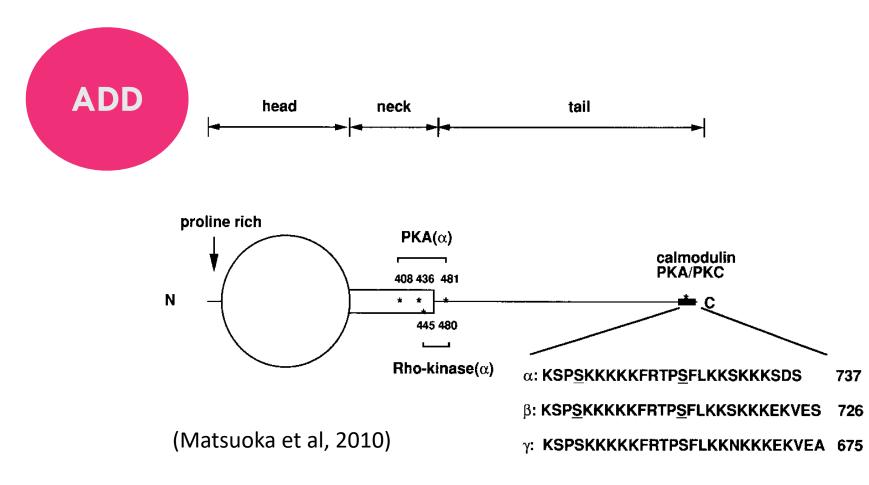



### INTRODUCTION

| Cardiovascular risk factors | Prevalence            | (%)                          |  |
|-----------------------------|-----------------------|------------------------------|--|
| Carulovascular risk factors | Malaysia <sup>2</sup> | Other countries <sup>4</sup> |  |
| Age, years (mean/median)    | 58.5                  | 65                           |  |
| Hypertension                | 65.0                  | 52                           |  |
| Smoking                     | 38 0                  | 62                           |  |
| Diabetes mellitus           | 45.8                  | 21                           |  |
| Dyslipidaemia               | 37.4                  | 38                           |  |
| Male                        | 78.8                  | 70                           |  |
| Family history              | 13.2                  | -                            |  |
| Body mass index (mean (SD)) | 26.1 (4.3)            | -                            |  |

<sup>1</sup>World Health Organisation (2008); <sup>2</sup>National Cardiovascular disease-Acute coronary syndrome Registry 2011-2013; <sup>3</sup>Hoo et al (2016); <sup>4</sup>Global Registry of Acute Coronary Events 1999-2009


A <45 Mala Hypert



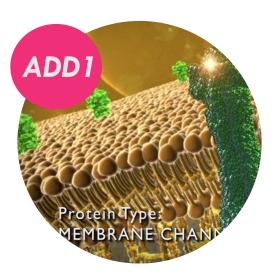
### HYPERTENSION

| Age group | Prevalence of hyp | ertension (%) <sup>2</sup> | Ratio         |
|-----------|-------------------|----------------------------|---------------|
| (years)   | Known             | Unknown                    | unknown:known |
| 18-19     | 0.7               | 6.0                        | 8.6           |
| 20-24     | 1.9               | 7.5                        | 3.9           |
| 25-29     | 2.8               | 10.4                       | 3.7           |
| 30-34     | 3.9               | 12.0                       | 3.1           |
| 35-39     | 5.8               | 18.1                       | 3.1           |
| 40-44     | 11.9              | 20.3                       | 1.7           |
| 45-49     | 15.0              | 23.8                       | 1.6           |
| 50-54     | 23.1              | 26.2                       | 1.1           |
| 55-59     | 29.3              | 26.2                       | 0.9           |
| 60-64     | 37.1              | 27.9                       | 0.8           |
| 65-69     | 39.1              | 28.7                       | 0.7           |
| 70-74     | 50.4              | 25.0                       | 0.5           |
| ≥ 75      | 46.1              | 27.3                       | 0.6           |

## $\alpha$ - ADDUCIN (ADD1)



- Adducin is a cytoskeletal protein
- Exists as α–γ and α–β
   heterodimers
- Tail important interaction site with other proteins


## ADD1 & ESSENTIAL HYPERTENSION

| ADD1 References into Functions |                                                                                                                       | References              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|
| Polymorphism                   | Gly460Trp polymorphism is associated with Essential Hypertension in a Caucasian population from Madeira Island.       | Sousa et al. (2017)     |
|                                | rs4963 polymorphism showed an increased hypertension risk.                                                            | Qu et al. (2017)        |
|                                | G460T polymorphism is associated with essential hypertension.                                                         | Soualmia et al.(2016)   |
|                                | The T allele is associated with essential hypertension in Asians.                                                     | Liao et al. (2016)      |
|                                | No difference in Gly460Trp polymorphism between control and pediatric hypertensive group.                             | Kaplan et al. (2015)    |
|                                | G614T polymorphism is associated with essential hypertension in Chinese patients.                                     | Wang et al. (2015)      |
|                                | rs4961 has a protective role in development of EH; interactions between alcohol consumption                           | Han et al. (2016)       |
|                                | rs4963 polymorphism is associated with essential hypertension in the Chinese population                               | Zhang et al. (2013)     |
|                                | G460W gene polymorphism was linked to essential hypertension                                                          | Li (2012)               |
|                                | G460W polymorphism was associated with hypertension in female Japanese subjects.                                      | Shioji et al (2010)     |
|                                | G460W polymorphism as predisposition gene to hypertension among Russians, but is influenced by environmental factors. | Polonikov et al. (2012) |
|                                | Null association of G460T with hypertension in Chinese.                                                               | Niu et al. (2011)       |

## ADD1 & ESSENTIAL HYPERTENSION

| ADD1 Reference | es into Functions                                                                                                                         | References             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Polymorphism   | Gly460Trp polymorphism might increase the risk of hypertension in Han Chinese populations.                                                | Liu et al. (2011)      |
|                | Genetic variation in ADD1 alter renal function and/or vasoreactivity                                                                      | Alioglu et al. (2011)  |
|                | Gly460Trp polymorphism is associated with salt-sensitivity.                                                                               | Wang et al. (2010)     |
|                | 460Trp allele was associated with lower levels of central systolic pressure and pulse pressure in JingNing population.                    | Guo et al. (2010)      |
|                | Role for the ADD1 variants in blood pressure salt sensitivity                                                                             | Kelly et al. (2010)    |
|                | rs4961 polymorphism is associated with essential hypertension                                                                             | Gong et al. (2010)     |
|                | TT genotypes might be genetic susceptibility factors to hypertension accompanying renal injury.                                           | Lu, Chen & Yu (2010)   |
|                | Gly460Trp polymorphism is significantly associated with an increased risk of coronary artery disease as well as blood pressure in Koreans | Cha et al. (2010)      |
|                | G460W polymorphism influences blood pressure when BMI and sex are taken into account                                                      | Fava et al. (2010)     |
|                | Gly460Trp polymorphism is associated with low renin hypertension.                                                                         | Sugimoto et al. (2010) |
|                | The ACE I/D, alpha-adducin Gly460Trp and aldosterone synthase -344C/T polymorphisms interact to influence SBP in Chinese.                 | Wang et al. (2010)     |
| Mutation       | Increased CFTR surface expression and activity in HEK (G460W) and cultured rat distal convoluted tubule cells (F316Y).                    | Mondini et al. (2013)  |

## ADD1 & ESSENTIAL HYPERTENSION

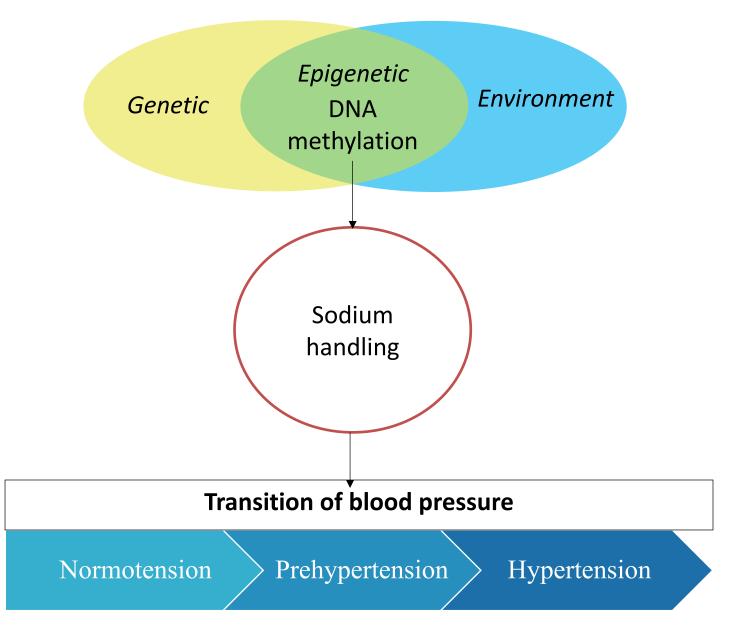


#### SODIUM HANDLING

**Sodium retention** 

Mutated ADD variant induced constitutive reduction of the Na/K pump endocytic rate (Torielli et al., 2010).

Physiological interaction between the *ADD1* and WNK1-NEDD4L pathways influences the effects of variants in these genes on Na-related BP regulation. (Manunta, Lavery et al., 2010).


Patients with ADD1 Trp alleles are sensitive to salt and tubular Na reabsorption remains elevated after volume expansion (Manunta, Milliard et al. 2010).

ADD1 Trp460Trp genotype is significantly associated with reduced renal plasma flow and glomerular filtration rate. (Beeks et al, 2010).



#### **EPIGENETICS**

Links genetic and environment

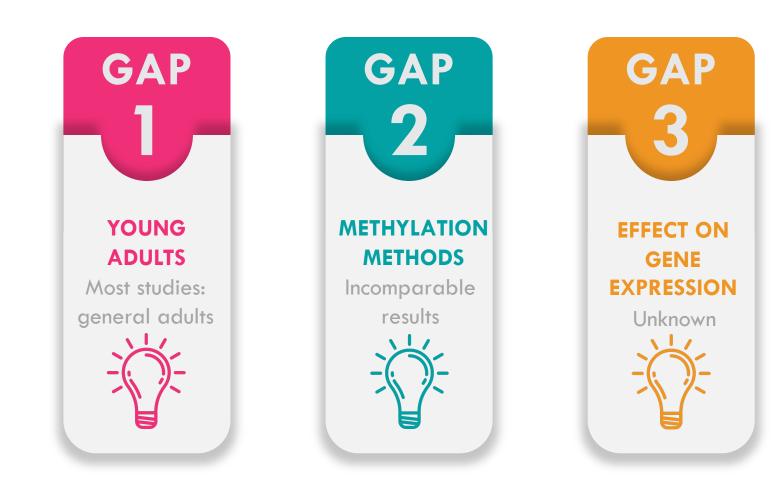


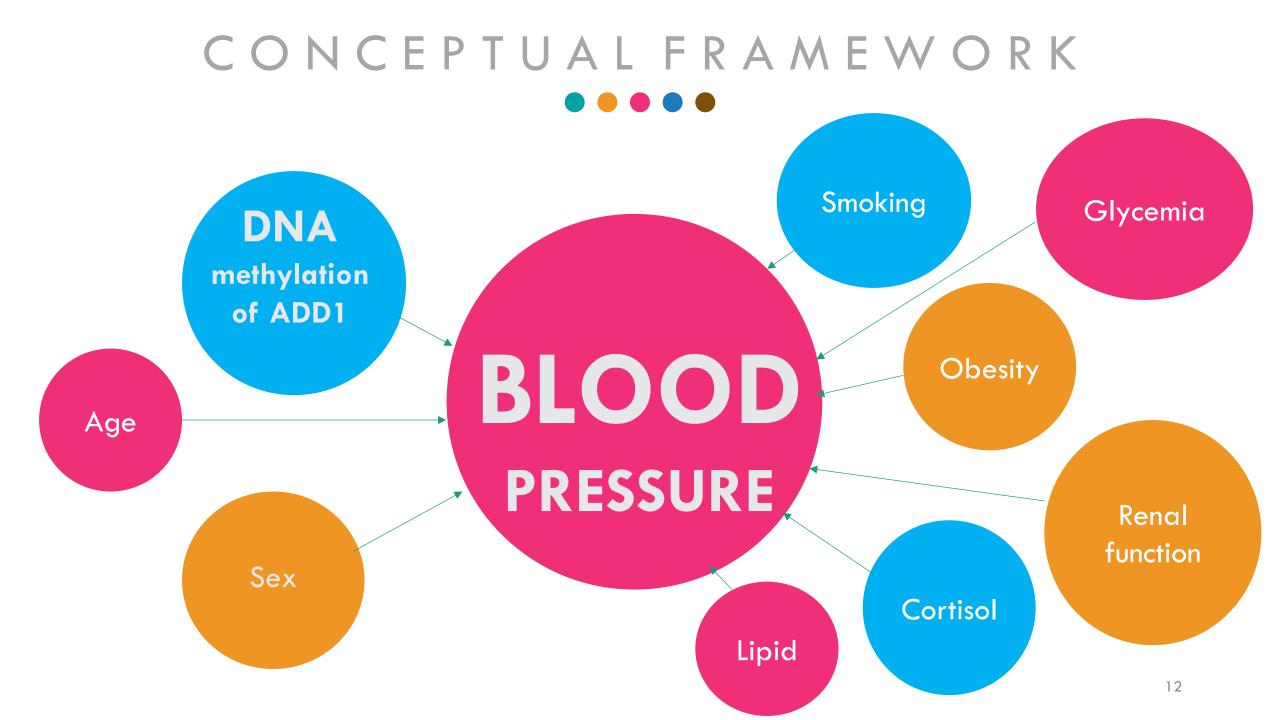
# ADD1 METHYLATION IN ESSENTIAL HYPERTENSION





Middle-age Egyptian with essential hypertension (Bayoumy et al. 2017).




Modifies EH susceptibility in Han Chinese adults (Han et al., 2015).



# GAPS OF KNOWLEDGE





# RESEARCH OBJECTIVES

To investigate the association between DNA methylation of the promoter of α-adducin (ADD1) with blood pressure in young adults

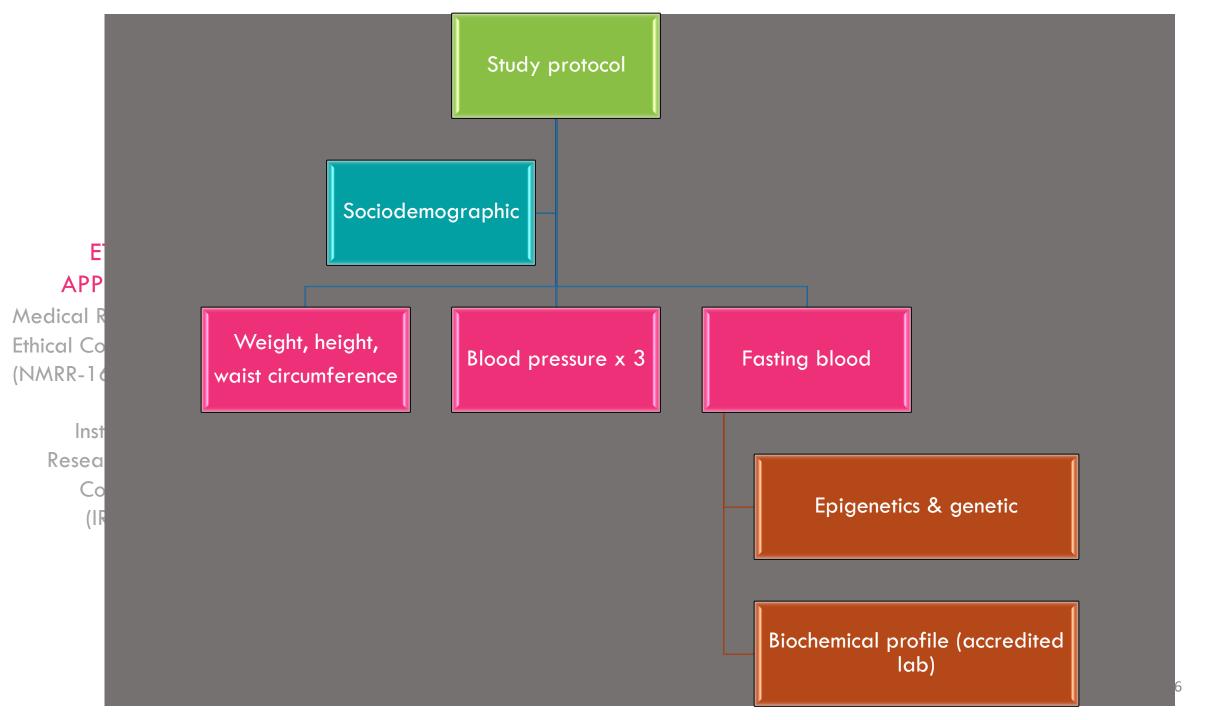
To investigate the association between the level of DNA methylation of the promoter of ADD1, and other covariates, with blood pressure in young adults

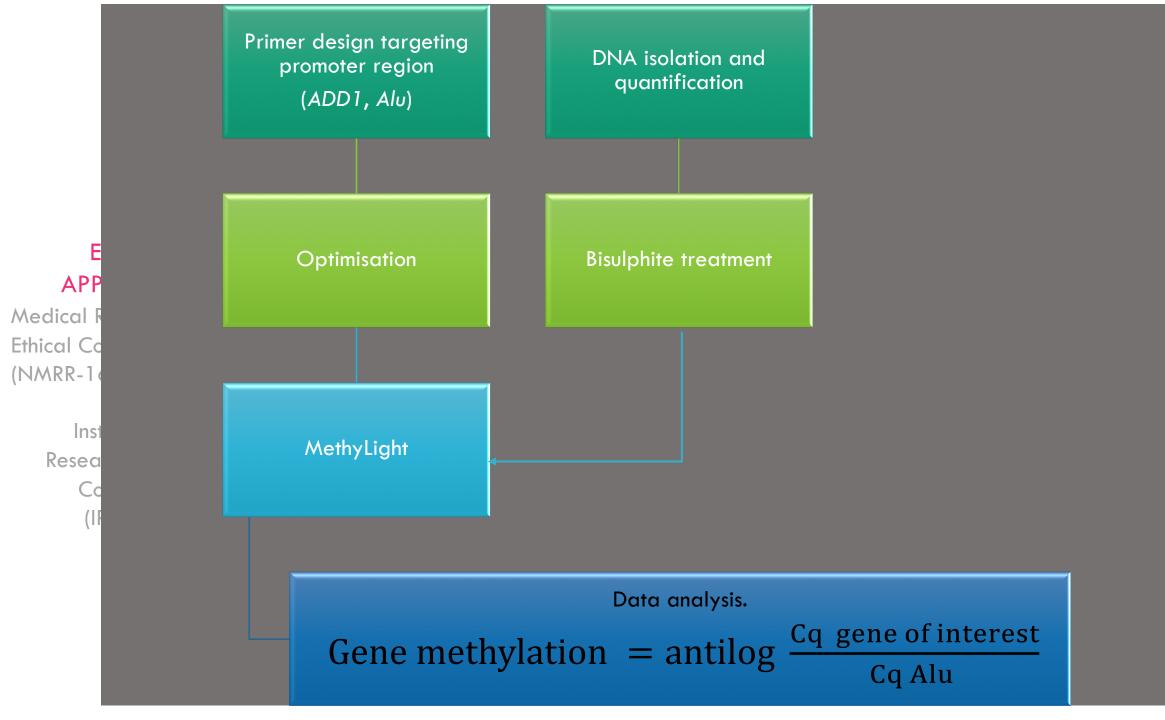
To investigate the association between level of ADD1 methylation with the gene

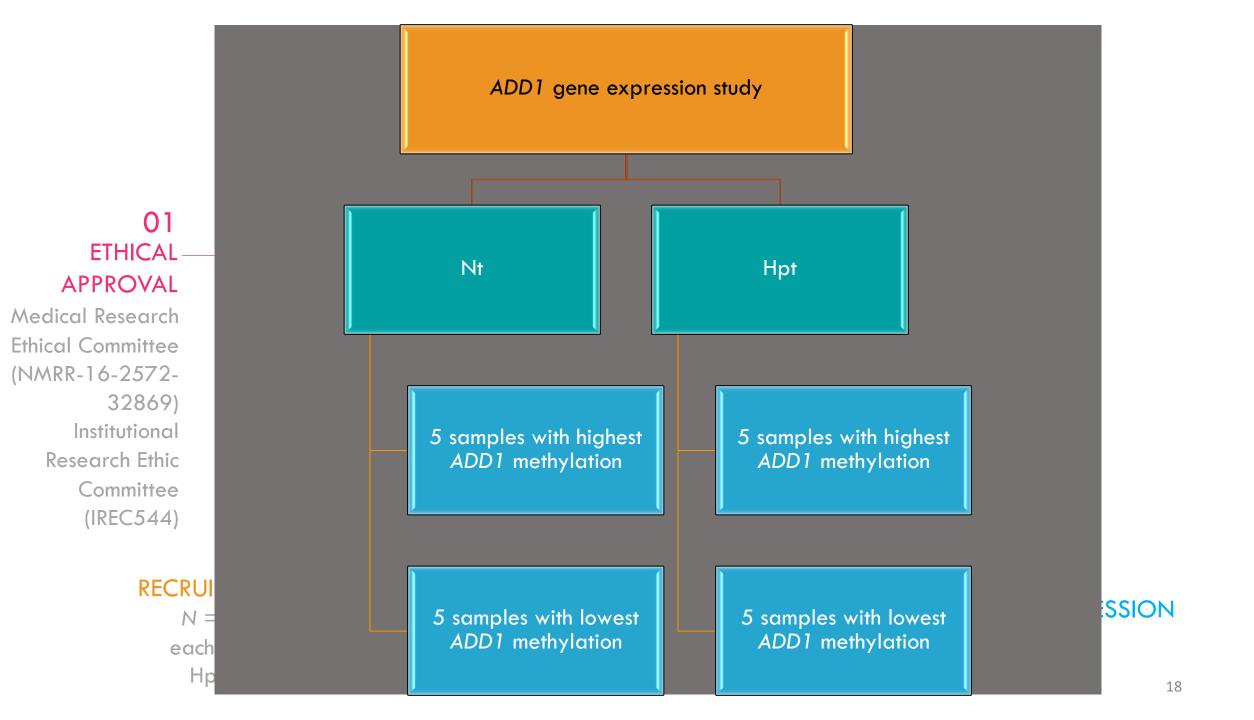
expression level

3

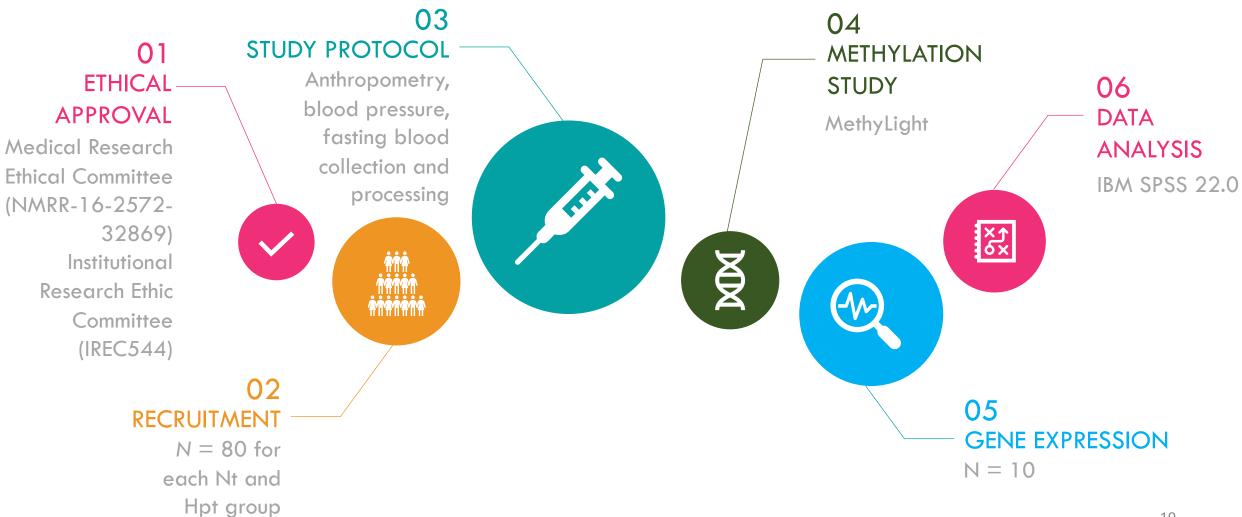
# METHODOLOGY





\*\*\*\*


| Sample Size Fo                                                        |                               |                                |             |                                              |
|-----------------------------------------------------------------------|-------------------------------|--------------------------------|-------------|----------------------------------------------|
|                                                                       | Input Data                    |                                |             |                                              |
| Confidence Interval (2-sid<br>Power<br>Ratio of sample size (Grou     | ·                             | 95%<br>80%<br>) 1              |             | Values adopted                               |
| Mean<br>Standard deviation<br>Variance                                | Group 1<br>16<br>4.5<br>20.25 | Group 21<br>14<br>4.5<br>20.25 | Difference* | from previous<br>methylation<br>study by Mao |
| Sample size of Group 1<br>Sample size of Group 2<br>Total sample size |                               | 80<br>80<br>160                |             | et al (2017) <sup>10</sup>                   |
| *Difference between the n<br>Results from OpenEpi, Ve                 |                               | source calculat                | torSSMean   |                                              |

### METHODOLOGY


|                                                                                             | Inc | lusion criteria                                                                           | Exc                  | lusion criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                    |  |
|---------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------|--|
| ETHI<br>APPRO<br>Medical Rese<br>Ethical Comm<br>(NMRR-16-2<br>328<br>Instituti<br>Research | 2.  | Age <b>18–45</b> years as<br>determined by the year of<br>birth<br>Consented              | 2.<br>3.<br>4.<br>5. | <ol> <li>Previous or current diagnosis of hypertension and/or current use<br/>of anti-hypertensive medication</li> <li>History of ischemic heart disease as reported by subject</li> <li>History of Type 1 or 2 diabetes mellitus as reported by subject</li> <li>History of chronic renal failure as reported by subject or serum<br/>creatinine more than 112 mmol/L as reported by subject</li> <li>Current use of steroid medication or history of conditions hyper-or<br/>hypocortisolism as reported by subject including but not limited to<br/>Cushing's syndrome</li> <li>Female subjects who are pregnant as reported by subject</li> </ol> |        |                                    |  |
| Comm                                                                                        |     |                                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                    |  |
|                                                                                             |     | ood pressure class according<br>G 4 <sup>th</sup> ed <sup>17</sup> and JNC7 <sup>18</sup> | to                   | Systolic blood pressure<br>(mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Diastolic blood pressure<br>(mmHg) |  |
|                                                                                             | Nc  | ormotension (Nt)                                                                          |                      | < 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and    | < 80                               |  |
|                                                                                             | Hy  | pertension (Hpt)                                                                          |                      | ≥ 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and/or | ≥ 90                               |  |
|                                                                                             |     | each Nt and<br>Hpt group                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                    |  |





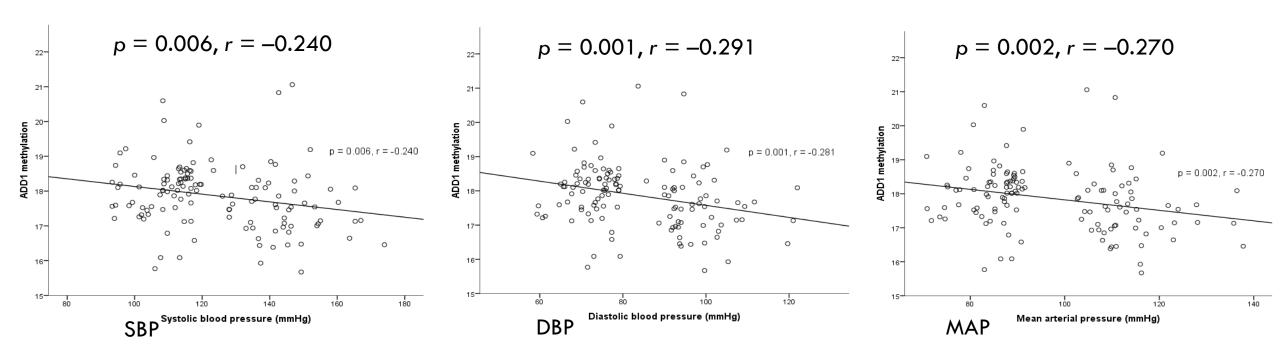


# METHODOLOGY

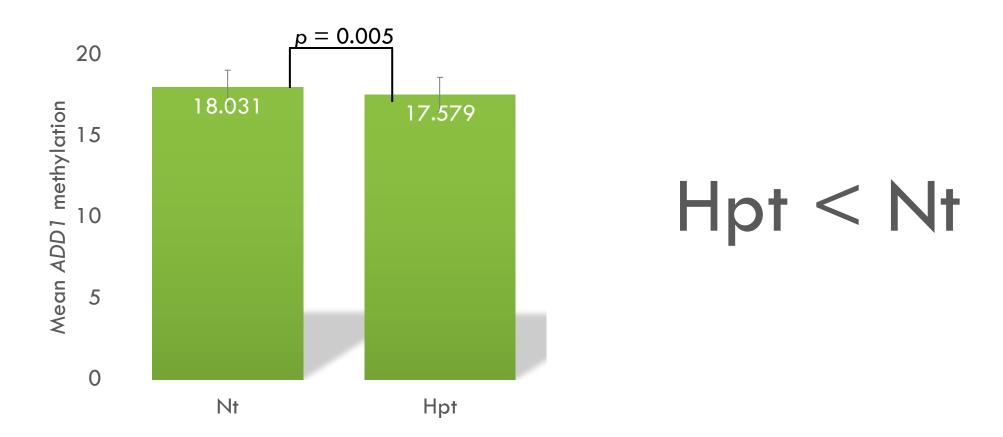


### RESULTS | Sociodemographic

|                                           |                                           | Blood pressu |            |                    |
|-------------------------------------------|-------------------------------------------|--------------|------------|--------------------|
| Sociodemograph                            | ic aspect                                 | Nt           | Htn        | p-value            |
| <mark>Age (years)<sup>Φ</sup></mark>      |                                           | 31 (7)       | 35 (6)     | <0.001°            |
| <mark>Male<sup>Ψ</sup></mark>             |                                           | 40 (39.6)    | 61 (60.4)  | 0.001ª             |
| <mark>Malay</mark> Ψ                      |                                           | 78 (53.1)    | 69 (46.9)  | 0.016°             |
| Education level $\Psi$                    | Primary                                   | 0 (0.0)      | 1 (100.0)  | 0.006 <sup>b</sup> |
|                                           | Secondary                                 | 12 (30.8)    | 27 (69.2)  |                    |
|                                           | Tertiary                                  | 68 (56.7)    | 52 (30.1)  |                    |
| $Smoking^{\Psi}$                          |                                           | 13 (39.4)    | 20 (60.6)  | 0.171ª             |
| <mark>Consume alcohol</mark> <sup>y</sup> |                                           | 1 (12.5)     | 7 (87.5)   | 0.030 <sup>b</sup> |
| <mark>Body mass index</mark>              | $(kg/m^2)^{\Phi}$                         | 25.2 (5.6)   | 29.4 (5.0) | <0.001°            |
| Body mass index                           | Underweight/Normal (<23 kg/m²)            | 31 (93.9)    | 2 (6.1)    | <0.001ª            |
| category $^{\Psi}$                        | <mark>Overweigh</mark> t (23–27.49 kg/m²) | 28 (47.5)    | 31 (52.5)  |                    |
|                                           | <mark>Obese</mark> (≥27.5kg/m²)           | 21 (30.9)    | 47 (69.1)  |                    |
| <mark>Waist circumferer</mark>            | <mark>ոշe (</mark> cm) <sup>Փ</sup>       | 84.9 (10.5)  | 94.5(13.3) | <0.001°            |
| Fema                                      | le                                        | 83.4 (11.6)  | 85.8(10.0) | 0.446 <sup>c</sup> |
| Male                                      |                                           | 86.4 (9.1)   | 97.3(13.0) | <0.001°            |

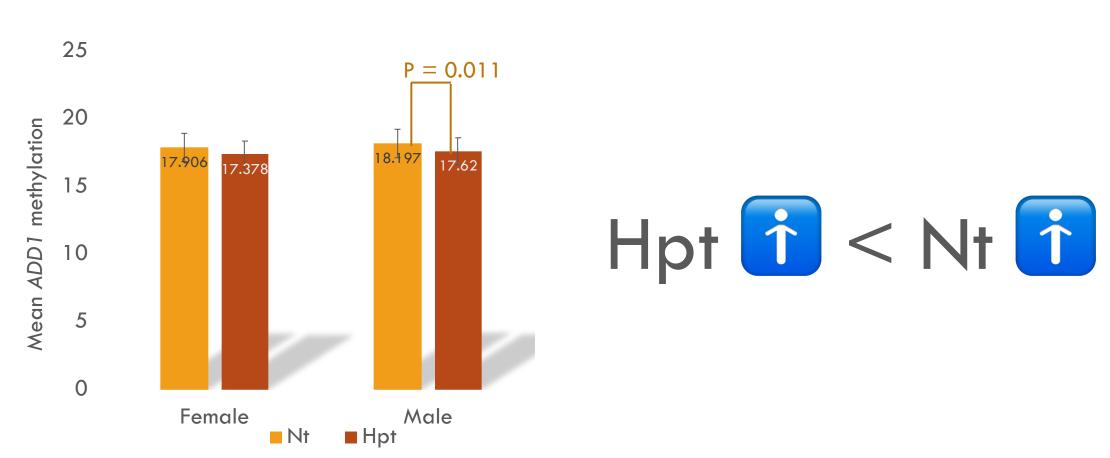

Note <sup>Φ</sup>Mean(standard deviation). <sup>Ψ</sup>n(%). <sup>a</sup>Analysed using Chi–squared test, <sup>b</sup>Analysed using Fisher's exact test, <sup>c</sup> Analysed using student's t-test. Body mass index status is according to World Health Organisation recommendation for Asian population.

## RESULTS | Biochemical


|                                          | <b>Blood</b> pressure |              |                     |
|------------------------------------------|-----------------------|--------------|---------------------|
| Biochemical profile                      | Nt                    | Htn          | p-value             |
| Creatinine ( $\mu$ mol/L) $^{\Omega}$    | 66.0 (27.0)           | 77.50(30.0)  | 0.032ª              |
| Fasting blood glucose (mmol/L) $^{\Phi}$ | 4.8 (0.5)             | 5.0(0.56)    | 0.043 <sup>b</sup>  |
| HbA1c (%) <sup>Φ</sup>                   | 5.3 (0.3)             | 5.5(0.3)     | <0.001 <sup>b</sup> |
| Total cholesterol (mmol/L) <sup>Φ</sup>  | 5.51 (0.92)           | 6.01(1.08)   | 0.002 <sup>b</sup>  |
| HDL–cholesterol (mmol/L) $^{\Omega}$     | 1.41 (0.43)           | 1.21(0.34)   | <0.001ª             |
| LDL–cholesterol (mmol/L) $^{\Omega}$     | 3.43 (1.28)           | 3.89(1.09)   | 0.002ª              |
| Triglycerides (mmol/L) $^{\Omega}$       | 0.95 (0.67)           | 1.68(1.04)   | <0.001ª             |
| TC/HDL ratio <sup>Ω</sup>                | 3.95 (1.4)            | 4.85(1.7)    | <0.001ª             |
| Cortisol (nmol/l) <sup>Ω</sup>           | 254.0 (177.0)         | 314.5(159.0) | 0.014ª              |
| hsCRP (mg/l) $^{\Omega}$                 | 0.9 (2.1)             | 2.6(4.8)     | <0.001ª             |

Note <sup>Φ</sup>mean (standard deviation). <sup>Ω</sup> median (IQR). <sup>α</sup>Analysed using Wilcoxon-Mann-Whitney test, <sup>b</sup>Analysed using student's t-test. HbA1c glycated haemoglobin. HDL high density lipoprotein. LDL low density lipoprotein. TC/HDL ratio total cholesterol to HDL ratio, HsCRP high sensitivity C-reactive protein.










Error-bars indicate standard deviation. Difference in mean were analysed by student's t-test.





Error-bars indicate standard deviation. Difference in mean were analysed by student's t-test.



|                         | Hyperter |       |                 |       |  |
|-------------------------|----------|-------|-----------------|-------|--|
| Variable                |          | 01    | 95 % C.I. of OR |       |  |
|                         | р        | OR    | Lower           | Upper |  |
| ADD1 methylation        | 0.008    | 0.516 | 0.316           | 0.844 |  |
| Age                     | 0.006    | 1.110 | 1.031           | 1.194 |  |
| BMI                     | < 0.001  | 1.207 | 1.094           | 1.331 |  |
| Creatinine              | 0.730    | 1.006 | 0.970           | 1.044 |  |
| FBG                     | 0.799    | 1.174 | 0.383           | 3.596 |  |
| LDLC                    | 0.316    | 1.326 | 0.764           | 2.304 |  |
| Female <sup>b</sup>     | 0.080    | 0.305 | 0.081           | 1.154 |  |
| Non-smoker <sup>c</sup> | 0.708    | 0.795 | 0.240           | 2.633 |  |

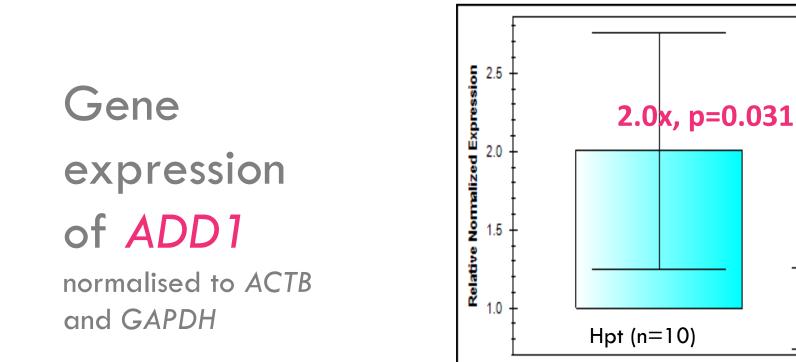
<sup>a</sup>Compared to normotension, <sup>b</sup>compared to male, <sup>c</sup>compared to current smoker.

B = coefficient, S.E. = standard error, df = degree of freedom, p = significance, OR = odd ratio, CI = confidence interval.

BMI = body mass index, FBG = fasting blood glucose, LDLC = low-density lipoprotein cholesterol.

Classification table: 80.3% correct. Nagelkerke R square, p = 0.461, Cox & Snell p = 0.344. Hosmer lemeshow 0.165



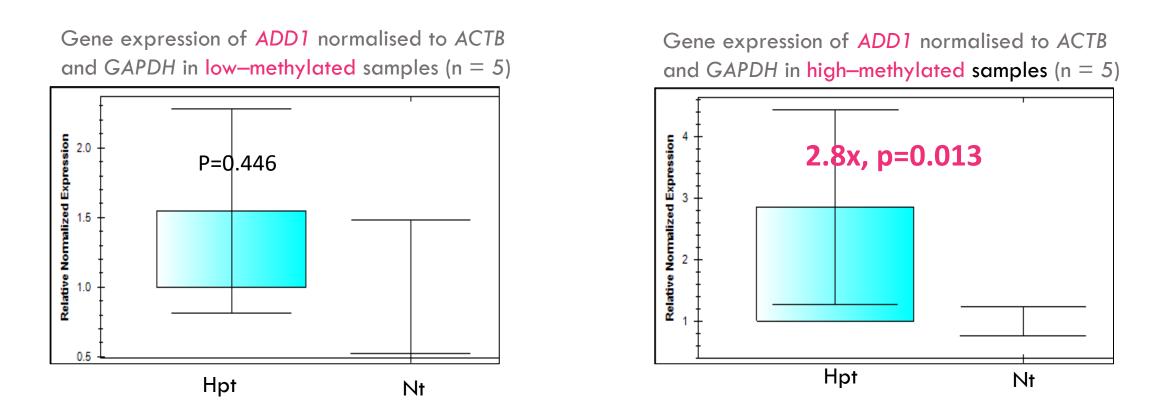

|                         | Female, hypertension <sup>a</sup> |       |          |                 | Male, hypertension <sup>a</sup> |       |           |                 |  |
|-------------------------|-----------------------------------|-------|----------|-----------------|---------------------------------|-------|-----------|-----------------|--|
| Variable                |                                   |       | 95 % C.I | 95 % C.I. of OR |                                 | 0.0   | 95 % C.I. | 95 % C.I. of OR |  |
|                         | р                                 | OR    | Lower    | Upper           | - p                             | OR    | Lower     | Upper           |  |
| ADD1 methylation        | 0.803                             | 0.866 | 0.280    | 2.683           | 0.024                           | 0.509 | 0.282     | 0.916           |  |
| Age                     | 0.065                             | 1.205 | 0.989    | 1.468           | 0.007                           | 1.138 | 1.036     | 1.250           |  |
| BMI                     | 0.296                             | 1.103 | 0.918    | 1.326           | < 0.001                         | 1.317 | 1.131     | 1.533           |  |
| Creatinine              | 0.846                             | 1.102 | 0.899    | 1.138           | 0.570                           | 1.012 | 0.971     | 1.054           |  |
| FBG                     | 0.641                             | 1.960 | 0.118    | 32.280          | 0.546                           | 0.650 | 0.160     | 2.632           |  |
| LDLC                    | 0.058                             | 3.888 | 0.953    | 15.858          | 0.689                           | 0.867 | 0.430     | 1.746           |  |
| Non-smoker <sup>b</sup> |                                   |       |          |                 | 0.608                           | 0.714 | 0.197     | 2.587           |  |

<sup>a</sup>Compared to normotension, <sup>b</sup>compared to current smoker.

B = coefficient, S.E. = standard error, df = degree of freedom, p = significance, OR = odd ratio, CI = confidence interval. BMI = body mass index, FBG = fasting blood glucose, LDLC = low-density lipoprotein cholesterol.

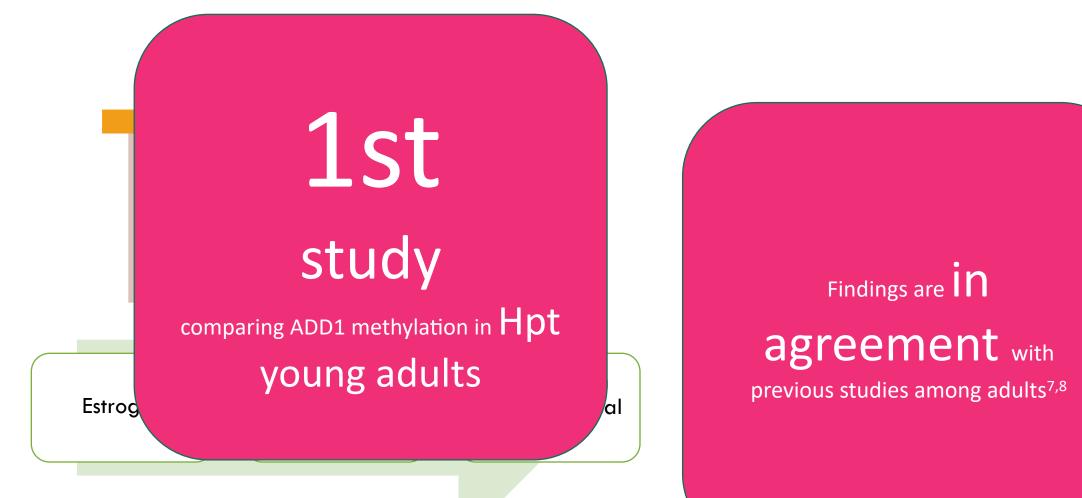
### **RESULTS** Association between ADD1 methylation and gene expression






Graph was generated by CFX Manager ver 3.0 (BioRad, USA). Error bar indicates standard deviation.

Nt (n≓10)


### **RESULTS** Association between *ADD1* methylation and gene expression





Expression normalised to normotension group (Nt). Graph was generated by CFX Manager ver 3.0 (BioRad, USA). Error bar indicates standard deviation.

#### DISCUSSION ••••



red

∕ity

TPase

xpression

#### CONCLUSION ••••

| 01 | 02 | 03 |
|----|----|----|
|    |    |    |
|    |    |    |
|    |    |    |

#### LOWER ADD1 methylation

in Hpt male young adults

#### ADD1 HYPOMETHYLATION

Predicts Hpt in male young adults

#### COMPLEX RELATIONSHIP

between ADD1 methylation and gene expression

# STRENGTH

#### **O1** First in Young Adults Previous methylation study in general adult

02 Anti-HPT naïve subjects Eliminate anti-HPT confounding effects

> 03 MethyLight Real-time, high sensitivity, quantitative







Longitudinal study or experimental animal study



#### Multi-centre study

For national data

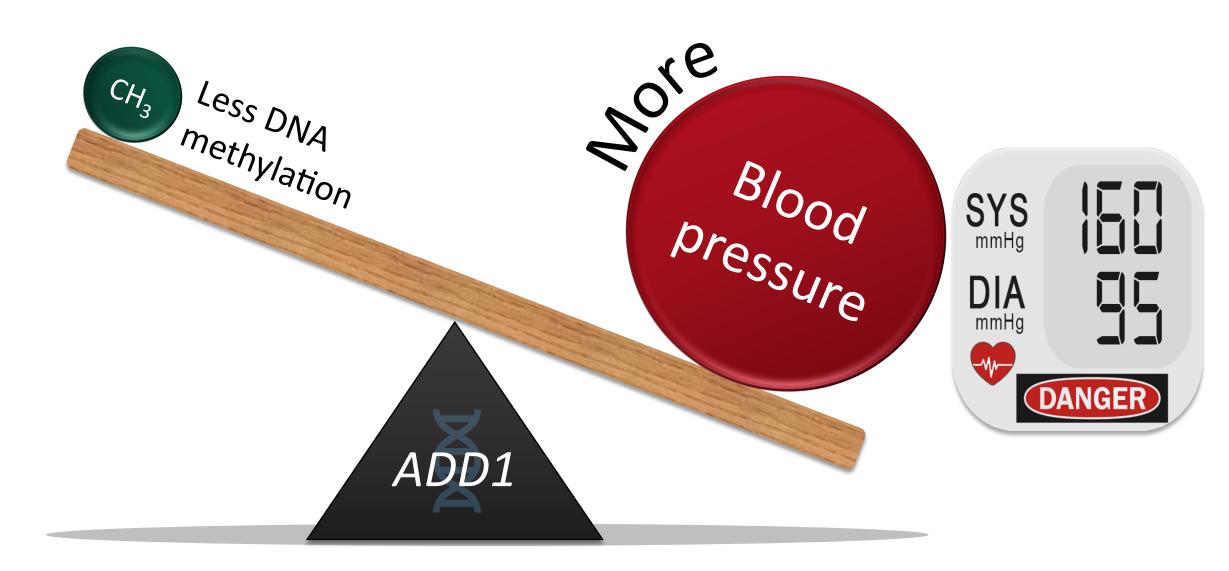
03 ? Environment effects on ADD1 methylation Sociodemographic, hormonal







fateinwanomar@iium.edu.my




R<sup>G</sup> Wan Fatein Nabeila Wan Omar



# REFERENCES

- 1. World Health Organization. (2013). A Global Brief on Hypertension. WHO Press.
- 2. Wan Ahmad, W. A., & Sim, K. H. (Eds). (2015). Annual Report of The NCVD-ACS Registry, 2011-2013. Kuala Lumpur, Malaysia.
- 3. Hoo, F. K., Foo, Y. L., Lim, S. M. S., Ching, S. M., & Boo, Y. L. (2016). Acute coronary syndrome in young adults from a Malaysian tertiary care centre. *Pakistan Journal of Medical Sciences*, 32(4), 841–845
- 4. Fox, K. A. A., Eagle, K. A., Gore, J. M., Steg, P. G., & Anderson, F. A. (2010). The global registry of acute coronary events, 1999 to 2009-GRACE. *Heart*, 96(14), 1095–1101.
- 5. Institute for Public Health (IPH). (2015). National Health and Morbidity Survey 2015 (NHMS 2015). Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems. Ministry of Health (Vol. II).
- 6. Mao, S., Sun, J., Gu, T., Zhu, F., Yin, F., & Zhang, L. (2017). Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. *Journal of Human Hypertension*, 1–7.
- 7. Zhang, L.-N., Liu, P.-P., Wang, L., Yuan, F., Xu, L., Xin, Y., ... Duan, S. (2013). Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. *PloS One*, 8(5), e63455.
- 8. Bayoumy, N. M. K., El-Shabrawi, M. M., Leheta, O. F., & Omar, H. H. (2017). α-Adducin gene promoter DNA methylation and the risk of essential hypertension. *Clinical and Experimental Hypertension*, 39(8), 764–768.
- 9. Malaysian Society of Hypertension, Ministry of Health Malaysia, & Academy of Medicine Of Malaysia. (2013). CPG Management of Hypertension (4th Edition). Malaysia Ministry of Health.
- Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., ... Roccella, E. J. (2003). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42, 1206– 1252.

