Surface analysis of early retrieved polyethylene tibial inserts for both knees in total knee replacement

By: Tan, MY (Tan, M. Y.); Liza, S (Liza, S.); Khadijah, SMP (Khadijah, S. M. P.); Abbas, AA (Abbas, A. A.); Merican, AM (Merican, A. M.); Ayob, KA (Ayob, K. A.); Zulkifli, NWM (Zulkifli, N. W. M.); Masjuki, H (Masjuki, H.);

ENGINEERING FAILURE ANALYSIS
Volume: 109
Article Number: UNSP 104279
DOI: 10.1016/j.engfailanal.2019.104279
Published: JAN 2020
Document Type: Article

Abstract
This study involves the failure analysis of a pair of ultra-high-molecular-weight-polyethylene (UHMWPE) knee tibial inserts from Scorpio (R) fixed-bearing total knee system by Stryker, which were retrieved from Total Knee Replacements (TKR) that was performed on 64 years old male patient with periprosthetic joint infection detected on both knees. Although the implants were removed due to infection, surface analysis was essential to be studied in order to analyse the surface damage mode of short-term implants. This study reports relevant damage mechanisms seen in early-retrieved UHMWPE tibial inserts (implanted for 6 and 8 months) and further analysis of chemical, physical and mechanical properties that possibly accompanied with failure. The surface characterization was done using a 3D laser microscope and Scanning Electron Microscope (SEM) to evaluate surface damage and dimensional change of both UHMWPE tibial inserts. Nano-indentation is used to measure the hardness and elasticity modulus of the tibial inserts. Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR), Differential Scanning Calorimetry (DSC) and Gel Permeation Chromatography (GPC) were used to characterize the chemical and physical properties of the inserts. In present study, retrieved polyethylene inserts with short implantation duration was considered to have high-grade wear modes. The high incidence of micropits (with the average depth of 27.5 mu m for 6 months insert and 18 mu m for 8 months insert) and scratches as the observed surface defects strengthen the role played by the particles upon defects generation for both tibial inserts. The average surface roughness of 6 and 8 months inserts were 1.6798 mu m and 1.2376 mu m, respectively. The rough surface (4.207 mu m) of region 4 at the lateral compartment proves that the 6 months tibial insert suffered more damage due to loosening defect where the radioluencies (the gap between bone and cement) were seen below medial and lateral aspects of the tibial tray. Our data demonstrated a strong association between the change of molecular weight and degradation of mechanical properties with wear for both inserts. The oxidation induced wear mechanism was observed on 6 months old insert due to the presence of delamination which demonstrates the evidence of in vivo oxidation from IR analysis.

Keywords
Author Keywords: Polyethylene tibial insert; Wear; Early-retrieved implant; Total knee replacement; Surface analysis
Keyword Plus: MOLECULAR-WEIGHT POLYETHYLENE; WEAR; PROSTHESIS; COMPONENTS; FATIGUE; LIFE; HIP

Author Information
Corresponding Address: Liza, S (corresponding author)
MJIIT, Mech Precis Engn Dept, TriPreM1 Kohza, Kuala Lumpur 54100, Malaysia.

Addresses:
[1] Univ Malaya, Fac Eng, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[2] MJIIT, Mech Precis Engn Dept, TriPreM1 Kohza, Kuala Lumpur 54100, Malaysia
[4] Int Islamic Univ Malaysia, Kulliyah Engn, Dept Mech Engn, Kuala Lumpur 53100, Malaysia

E-mail Addresses: shahiraliza@utm.my

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Show details</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universiti Malaya</td>
<td></td>
<td>BK070-2015</td>
</tr>
</tbody>
</table>
Cited References: 28

Showing 28 of 28 View All in Cited References page

1. Failure analysis for degradation of a polyethylene knee prosthesis component
 By: Diabib, J.; Juarez-Hernandez, A.; Reyes, A.; et al.
 ENGINEERING FAILURE ANALYSIS Volume 16 Issue 5 Pages: 1770-1773 Published: JUL 2009
 Times Cited: 5

2. Assuring the happy total knee replacement patient
 By: Dreier, M.; Dwyer, T.; Chakraverty, R.; et al.
 BONE & JOINT JOURNAL Volume 95B Issue: 11 Supplement: A Pages: 120-123 Published: NOV 2013
 Times Cited: 349

3. Early failures in total knee arthroplasty
 By: Fehring, TK; Odum, S; Griffith, WL; et al.
 CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Issue: 392 Pages: 315-318 Published: NOV 2001
 Times Cited: 349

4. Analysis of wear and friction of total knee replacements. Part I. Wear assessment on a three station wear simulator
 By: Flannery, M.; McGoughlin, T.; Jones, E.; et al.
 WEAR Volume 265 Issue: 7-8 Pages: 999-1008 Published: SEP 2008
 Times Cited: 23

5. Analysis of Retrieved Ultra-High-Molecular-Weight Polyethylene Tibial Components From Rotating-Platform Total Knee Arthroplasty
 By: Garcia, Ryan M; Kraay, Matthew J; Messerschmitt, Patrick J; et al.
 JOURNAL OF ARTHROPLASTY Volume 24 Issue: 1 Pages: 131-138 Published: JAN 2009
 Times Cited: 18

6. Mobile-bearing knees reduce rotational asymmetric wear
 By: Ho, Fang-Yuan; Ma, Hon-Ming; Liao, Jiann-Jeng; et al.
 CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Issue: 462 Pages: 145-149 Published: SEP 2007
 Times Cited: 32

7. RETRIEVAL ANALYSIS OF TOTAL KNEE PROSTHESES - A METHOD AND ITS APPLICATION TO 48 TOTAL CONDYLAR PROSTHESES
 By: IGOO, RW; WRIGHT, TM; BURSTEIN, AH
 JOURNAL OF BIOMEDICAL MATERIALS RESEARCH Volume: 17 Issue: 5 Pages: 829-842 Published: 1983
 Times Cited: 346

8. How has the biologic reaction to wear particles changed with newer bearing surfaces?
 By: Jacobs, Joshua J; Campbell, Patricia A; Konttinen, Yrjoe T.
 Group Author(s): Implant Wear Symposium 2007 Biol.
 Times Cited: 35

9. Diagnosis and management of infected total knee arthroplasty.
 By: Kalare, Niraj V; Gore, Terence J; Singh, Jasvinder A
 The open orthopaedics journal Volume: 5 Pages: 86-91 Published: 2011 Mar 16
 Times Cited: 24

10. Mechanical Properties and Tribological Behaviour of Retrieved UHMWPE Tibial Insert in Total Knee Replacement after Implantation 30 Months
 By: Kang, Xueqin; Ge, Shirong; Dai, Xiaofeng
 Times Cited: 5