Fatty acid profiles of Antarctic cyanobacteria Leptolyngbya

By: Abidin, ZAZ (Abidin, Z. A. Zainal)[1]; Zainuddin, Z (Zainuddin, Z.)[2]; Mastrai, SFQW (Mastrai, S. F. Q. Wan)[1]; Merican, FMMS (Merican, F. M. Mohd Sidi)[3]; Convey, P (Convey, P.)[4]

JOURNAL OF ENVIRONMENTAL BIOLOGY
Volume: 41, Issue: 4, Pages: 687-694
DOI: 10.22438/jeb/41/4/MRN-1305
Published: JUL 2020
Document Type: Article
View Journal Impact

Abstract
Aim: Antarctic cyanobacteria may represent a potential resource of new and unique compounds with interesting capabilities. Profiling of fatty acids in Antarctic cyanobacteria can provide an overview of potential fatty acids present in them, that can be utilised in future applications.

Methodology: In total, 4 cyanobacteria previously isolated from Antarctic polar ice was used in this study. Molecular identification using 16S rRNA gene was used to ascertain their identities as Leptolyngbya spp. and their fatty acid profiles were determined using GCMS.

Results: Morphologically, these cyanobacteria were found similar to Leptolyngbya sp. Analysis of 16S rRNA gene sequences amplified further confirmed their identity and were designated as Leptolyngbya sp. A, B, D and E. Following fatty acid analysis using GCMS, it was determined that unsaturated fatty acids predominated the fatty acid profiles for Leptolyngbya sp. A, B and D, while saturated fatty acid was found dominant in Leptolyngbya sp. E. Leptolyngbya sp. D contained almost 100% of linoleic acid, whilst Leptolyngbya sp. A and Leptolyngbya sp. B contained 59.35% and 83.33% of linoleic acid, respectively. Besides linoleic acid, palmitoleic acid (18.45%), oleic acid (19.46%) and lauric acid (2.74%) were also present in Leptolyngbya sp. A. As for Leptolyngbya sp. B, other than linoleic acid, only decic acid (16.67%) was detected.

Interpretation: Findings from this study demonstrate that the Antarctic Leptolyngbya spp. A, B and D identified in this study possess high content of unsaturated fatty acids, while only saturated fatty acid was present in Leptolyngbya sp. E. Fatty acid profiles revealed the potential of these Antarctic Leptolyngbya species to be further exploited for other applications.

Keywords
Author Keywords: 16S rRNA; Antarctic region; Cyanobacteria; Fatty acid profiles; Leptolyngbya

Author Information
Reprint Address:
International Islamic University Malaysia

Corresponding Address: Abidin, ZAZ (corresponding author)

Addresses:
1. Int Islamic Univ Malaysia, Dept Biotechnol, Kulliyyah Sci, Kuantan 25200, Pahang, Malaysia
2. Int Islamic Univ Malaysia, Dept Biotechnol, Kulliyyah Sci, Kuantan 25200, Pahang, Malaysia
3. Univ Sains Malaysia, Sch Biol Sci, George Town 11800, Malaysia
4. British Antarctic Survey, NERC, Cambridge CB3 0ET, England

E-Mail Addresses: zarina@iium.edu

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Islamic University Malaysia</td>
<td></td>
</tr>
</tbody>
</table>
Applications of cyanobacteria in biotechnology
By: Abed, R. M. M.; Dobretsov, S.; Sudesh, K.
JOURNAL OF APPLIED MICROBIOLOGY Volume: 106 Issue: 1 Pages: 1-12 Published: JAN 2009

Treatment of textile dye effluent using marine cyanobacterium Lyngbya sp with different agrowastes and its effect on the growth of cyanobacterium
By: Bela, R. B.; Malliga, P.
JOURNAL OF ENVIRONMENTAL BIOLOGY Volume: 36 Issue: 3 Pages: 623-626 Published: MAY 2015

Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy
By: Cai, Yibing; Gao, Chuntao; Xu, Xiaolin; et al.
SOLAR ENERGY MATERIALS AND SOLAR CELLS Volume: 103 Pages: 53-61 Published: AUG 2012

Phylum BX. Cyanobacteria-oxygenic photosynthetic bacteria
By: Castenholz, RW.
Bergey's manual of systematic bacteriology Volume: 1 Pages: 473-487 Published: 2001
Publisher: Springer Verlag, New York, NY, USA

The future of genomics in polar and alpine cyanobacteria
By: Christmas, Nathan A. M.; Anesio, Alexandre M.; Sanchez-Baracaldo, Patricia
FEMS MICROBIOLOGY ECOLOGY Volume: 94 Issue: 4 Article Number: fiy032 Published: APR 2018

Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep
By: Duckett, Susan K.; Voipio-Lagreca, Gabriella; Alende, Mariano; et al.
DIABETES METABOLISM SYNDROME AND OBESITY-TARGETS AND THERAPY Volume: 7 Pages: 553-563 Published: 2014

Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes
By: Dynar, D; Eppenberger-Eberhardt, M.; Maedler, K; et al.
DIABETES Volume: 50 Issue: 9 Pages: 2105-2113 Published: SEP 2001

Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure
By: Kien, CL; Bunn, JY; Ugrasbul, F
Times Cited: 201

Times Cited: 4

Times Cited: 59

Times Cited: 248

Times Cited: 10

Times Cited: 22

Times Cited: 138

Times Cited: 102