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Abstract. This paper represents a numerical analysis for heat transfer of a Jeffrey fluid flow past 
a stretching sheet with ohmic dissipation and suction/injection. The partial differential equations 
are reduced into a set of convenient nonlinear ordinary differential equations with the boundary 
conditions. Haar wavelet quasilinearization method (HWQM) is used to solve ordinary 
differential equations. The effect of various related parameters on velocity and temperature 
profiles are computed and analyzed. Then, comparison is made between the numerical results of 
proposed method with existing numerical solutions found in the literature, and reasonable 
agreement is noted.   

 

1. Introduction 

The boundary layer flows induced by a stretching sheet has great importance in the aerodynamic 
extrusion of plastic sheets, crystal growing, continuous casting, cooling of metallic plate in a bath, glass 
fiber and paper production, the boundary layer along a liquid film in the condensation process and many 
others [1]. Such consideration in the presence of heat transfer has central role in the polymer industry. 
An exact analytic solution for the two dimensional boundary layer flow of viscous fluid over a linearly 
stretching surface was firstly presented by Crane [2]. Later, this problem has been extensively examined 
through various aspects such as suction/blowing, stretching velocities, magnetohydrodynamics, heat/ 
mass transfer and so on. Further, the addition of heat generation/absorption term in energy expression 
is very important in the cases involving underground disposal of radioactive waste material, storage of 
food stuffs, heat removal from nuclear fuel fragments and packed bed reactors. Some of the studies on 
such effects can be seen in Ref. [1, 3-7]. 
 Related to the presence of suction/injection, Vajravelu [8] has applied variable size of finite 
difference method for solving the convection flow and heat transfer of a viscous fluid near an infinite, 
porous and vertical stretching surface. Muthucumaraswamy [9] studied the effects of suction on heat 
and mass transfer along a moving vertical surface in the presence of chemical reaction. El-Arabawy [10] 
investigated the effects of suction/injection and chemical reaction on mass transfer over a stretching 
surface. Elbashbeshy and Bazid [11] have analyzed the effect of internal heat generation and suction or 
injection on the heat transfer in a porous medium over a stretching surface. Sultana et al. [12] discussed 
the effects of internal heat generation, radiation and suction or injection on the heat transfer in a porous 
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medium over a stretching surface. Rajeswari et al. [13] studied the effect of chemical reaction, heat and 
mass transfer on nonlinear MHD boundary layer flow through vertical porous surface with heat source 
in the presence of suction. Elbashbeshy et al. [14] used Runge-Kutta technique to study the effects of 
suction/injection and variable chemical reaction on mass transfer characteristics over unsteady 
stretching surface embedded in porous medium. Kumari and Nath [15] analyzed the significant results 
for heat transfer on a thin vertical cylinder in the presence of suction/injection. Siri et al. [16] studied 
the boundary layer flow of Maxwell fluid past a stretching surface in the presence of suction/injection 
using two different approaches, HWQM and RK Gill method. Some research were purposed, in Ref. 
[17 - 21] to examine the impact of suction/injection during the flow of a fluid in the case of different 
geometries. Later, many researchers [22-27] investigated the influences of ohmic and viscous 
dissipation on nanofluid flow under diverse conditions.  
 Based on our literature study, no research has been made so far to study suction/injection on a 
Jeffrey fluid flow past a steady stretching sheet by using our proposed method. The non-dimensionalized 
partial differential equations (PDEs) [28] were transformed into the ordinary differential equations 
(ODEs) and solved numerically by employing the HWQM. Chen and Hsiao [29] led the work using 
Haar wavelet to solve system analysis. They solved the lumped and the distributed-parameters systems 
using Haar operational matrix derived from an integration of Haar function. Later, numerous numerical 
method studies based on the Haar wavelet was conducted when solving differential and integral 
equations, partial differential equation, fractional calculus, hyperbolic heat conduction problem and 
finding numerical inversion of Laplace transform [30]. Recently, HWQM has been adopted to solve 
fractional non-linear equation, Burgers equation, and Cattaneo Christov heat flux problem [30]. For 
solving the nonlinear and PDEs, Bellman and Kalaba [31] proposed the quasilinearization method which 
is based on the Newton Raphson method.  

 

2. Mathematical formulation 

A steady two-dimensional boundary layer flow of an incompressible Jeffrey fluid flow over an 
impermeable stretched sheet with the presence of suction/injection is considered. Noted that the flow is 
generated by stretching the boundary sheet from a slit by commanding two equal and opposite forces.  
The flow region is exposed under uniform transverse magnetic fields 𝐵𝐵�⃗ = (0,𝐵𝐵0, 0) and uniform electric 
field 𝐸𝐸�⃗ = (0, 0,−𝐸𝐸0), for which satisfies the Maxwell’s equation, such that ∇.𝐵𝐵�⃗ = 0 and ∇.𝐸𝐸�⃗ = 0 . If 
the magnetic field is not strong enough, the electric and magnetic field follow the Ohm’s law, 𝐽𝐽 =
𝜎𝜎�𝐸𝐸�⃗ + 𝑞⃗𝑞 × 𝐵𝐵�⃗ � , where 𝐽𝐽 is the Joule current, 𝜎𝜎 is the magnetic permeability and 𝑞⃗𝑞 is the fluid velocity. 
Under the above stated assumptions, the governing boundary layer equations for momentum and energy 
are [28]  
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The velocity components along the 𝑥𝑥 and 𝑦𝑦 directions are denoted as 𝑢𝑢 and 𝑣𝑣, respectively. 𝑉𝑉 is the 
kinematic viscosity, 𝜆𝜆1 is the fluid relaxation time, 𝜆𝜆2 is the thermal relaxation time, 𝑇𝑇 is the fluid 
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temperature, 𝑘𝑘 is the thermal conductivity, 𝜌𝜌 is fluid density, 𝜇𝜇 is the dynamic viscosity and 𝑐𝑐𝑝𝑝 is the 
specific heat at constant pressure.  

 The boundary conditions in the present problem are 

 𝑢𝑢 = 𝑎𝑎𝑎𝑎,     𝑣𝑣 = 𝑣𝑣0,    𝑇𝑇 = 𝑇𝑇𝑤𝑤     at   𝑦𝑦 = 0, Error! 
Bookmark 

not 
defined.(4) 

 
 𝑢𝑢 → 0,   
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→ 0,   𝑇𝑇 → 𝑇𝑇∞  as  𝑦𝑦 → ∞ 

In the Eqn. (4), 𝑣𝑣0 represents the velocity of suction/injection at the wall, 𝑇𝑇𝑤𝑤 is the temperature at the 
wall, and 𝑇𝑇∞ is the ambient fluid temperature.  

 By using these similarity transformation,  
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in which 𝜓𝜓 is the stream function defined in the 𝑢𝑢 = 𝜕𝜕𝜕𝜕
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 . 𝜂𝜂 is the similarity variable, 
𝑓𝑓 and 𝜃𝜃 are the dimensionless stream function and dimensionless temperature, respectively, Eqns. (2) 
and (3) can be reduced to a system ODEs as follows: 
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and the transformed boundary conditions (4) are 

 𝜂𝜂 = 0 ∶  𝑓𝑓 = 𝑠𝑠,  𝑓𝑓 ′ = 1,   𝜃𝜃 = 1, Error! 
Bookmark 

not 
defined.(4) 
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The Prandtl number is given as 𝑃𝑃𝑃𝑃 = 𝜇𝜇𝑐𝑐𝑝𝑝
𝑘𝑘
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and the local electrical parameter is given as 𝐸𝐸1 = 𝐸𝐸0
𝐵𝐵0𝑎𝑎𝑎𝑎

 . The suction parameter is 𝑠𝑠 = − 𝑣𝑣0
√𝑐𝑐𝑐𝑐

, where 𝑐𝑐 is 
a positive constant, 𝑠𝑠 > 0 (suction), 𝑠𝑠 < 0 (injection) and 𝑠𝑠 = 0 (impermeable surface).  

 

3. Numerical solutions 

This section presents the Haar wavelet quasilinearization method (HWQM) for solving nonlinear ODEs 
(6) – (8). Wavelet methods became a requisite mathematical tool in many investigations and have 
numerous applications including finding an approximate solution of differential equations. Among 
prominent wavelet basis used in numerical methods are Chebyshev-, Legendre-, Haar-, and Meyer-
wavelets. However, the Haar wavelet has caught special attention for the reason that it is the simplest 
orthogonal wavelet. Other beneficial features using Haar wavelet basis are discussed in Refs. [32 - 34]. 
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3.1 Haar wavelets 

The Haar scaling function for 𝜂𝜂 ∈ [0,𝑋𝑋] is defined as 
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where 𝑖𝑖  =  1,  2,  .  .  .  ,𝑚𝑚 − 1 is the series index number and the resolution 𝑚𝑚 = 2𝐽𝐽 is a positive integer 
and 𝐽𝐽 is the maximum level of resolution. In Eqn. (10), 𝛼𝛼 and 𝑘𝑘 represent the integer decomposition of 
the index i, i.e.  𝑖𝑖  =  2𝛼𝛼 + 𝑘𝑘 in which 𝛼𝛼  =  0,  1,  .  .  .  ,  𝐽𝐽  −  1 and 𝑘𝑘  =  0,  1,  .  .  .  ,  2𝛼𝛼 −  1. 
 In the Haar wavelet method, the following integrals are used 
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The generalized Haar wavelet and its integration are derived and modified, hence the expansion of Haar 
series could be between zero to a number greater than one. It is a great help due to the boundary value 
problem always dealing with sufficiently a large interval [0,𝑋𝑋). Any square integrable function               
𝑓𝑓 ∈ 𝐿𝐿2 [0,𝑋𝑋] can be decomposed  into a linear combination of Haar basis and can be written as 
 

 𝑓𝑓(𝜂𝜂) = �𝑐𝑐𝑖𝑖ℎ𝑖𝑖(𝜂𝜂),
∞
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where the Haar coefficients,  𝑐𝑐𝑖𝑖 can be obtained from 
 

 𝑐𝑐𝑖𝑖 =
2𝛼𝛼

𝑋𝑋
� 𝑓𝑓(𝜂𝜂)ℎ𝑖𝑖(𝜂𝜂)
𝑋𝑋

0
𝑑𝑑𝑑𝑑. 

Error! 
Bookmark 

not 
defined.(14) 

 
The above series terminates at finite terms if 𝑓𝑓(𝜂𝜂) may be approximated as piecewise constant during 
each subinterval. 

3.2 Quasilinearization method 
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The nonlinear boundary value problems (BVPs) is linearized in the quasilinearization method. Hence, 
it forms a series of equations, which is typically convergence in nature [31, 35, 36].  
 We consider a nonlinear boundary value problems of second order differential equation, 
 

 𝜃𝜃′′(𝜂𝜂) = 𝑓𝑓(𝜃𝜃′(𝜂𝜂),𝜃𝜃(𝜂𝜂), 𝜂𝜂). 
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subject to boundary conditions, 
 

 𝜃𝜃′(𝑎𝑎) = 𝜅𝜅,  and 

Error! 
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not 
defined.(16) 

 𝜃𝜃(𝑏𝑏) = 𝜏𝜏,  𝑎𝑎 ≤ 𝜂𝜂 ≤ 𝑏𝑏, 

Error! 
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where 𝑓𝑓 is a nonlinear differentiable function. Let 𝜃𝜃0(𝜂𝜂) be an initial approximation of the function 
𝜃𝜃(𝜂𝜂). The Taylor series expansion of f around  𝜃𝜃0(𝜂𝜂) is 
 

 

𝑓𝑓(𝜃𝜃′(𝜂𝜂),𝜃𝜃(𝜂𝜂),𝜂𝜂) =
𝑓𝑓(𝜃𝜃0′(𝜂𝜂),𝜃𝜃0(𝜂𝜂),𝜂𝜂) + �𝜃𝜃(𝜂𝜂) − 𝜃𝜃0(𝜂𝜂)�𝑓𝑓𝜃𝜃0(𝜃𝜃0′(𝜂𝜂),𝜃𝜃0(𝜂𝜂),𝜂𝜂) +
�𝜃𝜃′(𝜂𝜂) − 𝜃𝜃0′(𝜂𝜂)�𝑓𝑓𝜃𝜃0′(𝜃𝜃0

′(𝜂𝜂),𝜃𝜃0(𝜂𝜂),𝜂𝜂) 
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where the function 𝑓𝑓𝜃𝜃(𝜃𝜃′(𝜂𝜂),𝜃𝜃(𝜂𝜂), 𝜂𝜂) = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and 𝑓𝑓𝜃𝜃′(𝜃𝜃′(𝜂𝜂),𝜃𝜃(𝜂𝜂), 𝜂𝜂) = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜃𝜃′. Ignoring the second 
order and  higher order terms in Equation (18). Then Eqn. (18) in Eqn. (15) yields 
 

 

𝜃𝜃′′(𝜂𝜂) =
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′(𝜂𝜂),𝜃𝜃0(𝜂𝜂),𝜂𝜂). 

Error! 
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By solving Eqn. (19) for 𝜃𝜃(𝜂𝜂) and call it 𝜃𝜃1(𝜂𝜂). Using 𝜃𝜃1(𝜂𝜂) and again expanding Eqn. (15) about  𝜃𝜃1(𝜂𝜂) 
yields 
 

 

𝜃𝜃′′(𝜂𝜂) =
𝑓𝑓(𝜃𝜃1′(𝜂𝜂),𝜃𝜃1(𝜂𝜂),𝜂𝜂) + �𝜃𝜃(𝜂𝜂) − 𝜃𝜃1(𝜂𝜂)� 𝑓𝑓𝜃𝜃1(𝜃𝜃1′(𝜂𝜂),𝜃𝜃1(𝜂𝜂),𝜂𝜂) +

�𝜃𝜃𝜂𝜂′ (𝜂𝜂)− 𝜃𝜃1′(𝜂𝜂)�𝑓𝑓𝜃𝜃1′(𝜃𝜃1′(𝜂𝜂),𝜃𝜃1(𝜂𝜂),𝜂𝜂). 

Error! 
Bookmark 

not 
defined.(50) 

 
And the third approximation for 𝜃𝜃(𝜂𝜂), and call it 𝜃𝜃2(𝜂𝜂). Assuming that the problem converges and in 
general, the recurrence relation can be written as 
 

 
𝜃𝜃𝑟𝑟+1′′ (𝜂𝜂) =

𝑓𝑓(𝜃𝜃𝑟𝑟′(𝜂𝜂),𝜃𝜃𝑟𝑟(𝜂𝜂),𝜂𝜂) + �𝜃𝜃𝑟𝑟+1(𝜂𝜂)− 𝜃𝜃𝑟𝑟(𝜂𝜂)�𝑓𝑓𝜃𝜃𝑟𝑟(𝜃𝜃𝑟𝑟′(𝜂𝜂),𝜃𝜃𝑟𝑟(𝜂𝜂), 𝜂𝜂) +
�𝜃𝜃𝑟𝑟+1′ (𝜂𝜂) − 𝜃𝜃𝑟𝑟′(𝜂𝜂)�𝑓𝑓𝜃𝜃𝑟𝑟′(𝜃𝜃𝑟𝑟

′(𝜂𝜂),𝜃𝜃𝑟𝑟(𝜂𝜂),𝜂𝜂), 

Error! 
Bookmark 

not 
defined.(21) 
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with 𝑟𝑟 = 0, 1, 2, … is number of iteration with 
 

 𝜃𝜃𝑟𝑟+1′ (𝑎𝑎) = 𝜅𝜅,  and 

Error! 
Bookmark 

not 
defined.(22) 

 𝜃𝜃𝑟𝑟+1(𝑏𝑏) = 𝜏𝜏. 

Error! 
Bookmark 

not 
defined.(23) 

Eqn. (21) is all the time a linear and can be computed recursively using the Haar series [37]. The details 
of convergence for this method can be referred to in literature [35, 36]. 
 Post quasilinearization of the Eqns. (6) and (7), yields 

 𝛼𝛼1,𝑟𝑟𝑓𝑓𝑟𝑟+1
(𝑖𝑖𝑖𝑖) + 𝛼𝛼2,𝑟𝑟𝑓𝑓𝑟𝑟+1‴ + 𝛼𝛼3,𝑟𝑟𝑓𝑓𝑟𝑟+1″ + 𝛼𝛼4,𝑟𝑟𝑓𝑓𝑟𝑟+1′ + 𝛼𝛼5,𝑟𝑟𝑓𝑓𝑟𝑟+1 = 𝑅𝑅1 , 

Error! 
Bookmark 

not 
defined.(24) 

 𝛽𝛽1,𝑟𝑟𝑓𝑓𝑟𝑟+1″ + 𝛽𝛽2,𝑟𝑟𝑓𝑓𝑟𝑟+1′ + 𝛽𝛽3,𝑟𝑟𝑓𝑓𝑟𝑟+1 + 𝛽𝛽4,𝑟𝑟𝜃𝜃𝑟𝑟+1″ + 𝛽𝛽5,𝑟𝑟𝜃𝜃𝑟𝑟+1′ + 𝛽𝛽6,𝑟𝑟𝜃𝜃𝑟𝑟+1 = 𝑅𝑅2 , 

Error! 
Bookmark 

not 
defined.(25) 

where  

 𝛼𝛼1,𝑟𝑟 = 𝛽𝛽𝑓𝑓𝑟𝑟2,  
 𝛼𝛼2,𝑟𝑟 = −𝑓𝑓𝑟𝑟,  
 𝛼𝛼3,𝑟𝑟 = −𝑓𝑓𝑟𝑟(𝑓𝑓𝑟𝑟 + 𝜆𝜆𝑓𝑓𝑟𝑟 + 2𝛽𝛽𝑓𝑓𝑟𝑟″),  
 𝛼𝛼4,𝑟𝑟 = 𝑓𝑓𝑟𝑟(2𝑓𝑓𝑟𝑟′ + 𝐻𝐻𝑎𝑎2 + 2𝜆𝜆𝑓𝑓′ + 𝜆𝜆𝜆𝜆𝑎𝑎2),  
 𝛼𝛼5,𝑟𝑟 = 𝑓𝑓𝑟𝑟‴ − (1 + 𝜆𝜆)𝑓𝑓 ′𝑟𝑟

2 + (1 + 𝜆𝜆)𝐻𝐻𝑎𝑎2𝐸𝐸1 − 𝐻𝐻𝑎𝑎2𝑓𝑓𝑟𝑟′,  
 𝛽𝛽1,𝑟𝑟 = 2𝑃𝑃𝑃𝑃 𝐸𝐸 𝑐𝑐𝑓𝑓𝑟𝑟″,  
 𝛽𝛽2,𝑟𝑟 = 2𝑃𝑃𝑃𝑃�−𝜃𝜃𝑟𝑟 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎2(𝑓𝑓𝑟𝑟′ − 𝐸𝐸1)�,  

 𝛽𝛽3,𝑟𝑟 = 𝑃𝑃𝑃𝑃 𝜃𝜃𝑟𝑟′ ,  

 𝛽𝛽4,𝑟𝑟 = 1,  

 𝛽𝛽5,𝑟𝑟 = 𝑃𝑃𝑃𝑃 𝑓𝑓𝑟𝑟,   

 𝛽𝛽6,𝑟𝑟 = −2𝑃𝑃𝑃𝑃 𝑓𝑓𝑟𝑟′,  

 𝑅𝑅1 = 2𝐻𝐻𝑎𝑎2𝐸𝐸1𝑓𝑓𝑟𝑟(1 + 𝜆𝜆) + 𝑓𝑓𝑟𝑟(𝑓𝑓𝑟𝑟‴ − (1 + 𝜆𝜆)𝐻𝐻𝑎𝑎2𝑓𝑓𝑟𝑟′),  

 𝑅𝑅2 = 𝑃𝑃𝑃𝑃 𝐸𝐸 𝑐𝑐 �𝑓𝑓″𝑟𝑟
2 + 𝐻𝐻𝑎𝑎2 �𝑓𝑓 ′𝑟𝑟

2 − 𝐸𝐸12�� + 𝑃𝑃𝑃𝑃(𝜃𝜃𝑟𝑟′ 𝑓𝑓𝑟𝑟 − 2𝜃𝜃𝑟𝑟𝑓𝑓𝑟𝑟′).  

The boundary conditions are at 

 𝜂𝜂 = 0:   𝑓𝑓𝑟𝑟+1 = 𝑠𝑠,  𝑓𝑓𝑟𝑟+1′ = 1,  𝜃𝜃𝑟𝑟+1 = 1, Error! 
Bookmark 

not 
defined. 

(26) 
Error! 

Bookmark 

 𝜂𝜂 → ∞:  𝑓𝑓𝑟𝑟+1′ → 0,  𝑓𝑓𝑟𝑟+1″ → 0,  𝜃𝜃𝑟𝑟+1 → 0. 
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not 
defined. 

Haar wavelet method is applied to Eqns. (24) and (25), we get 

 𝑓𝑓𝑟𝑟+1
(𝑖𝑖𝑖𝑖)(𝜂𝜂) = � 𝑎𝑎𝑖𝑖ℎ𝑖𝑖(𝜂𝜂),    and

𝑚𝑚−1

𝑖𝑖=0

 

Error! 
Bookmark 

not 
defined.(27) 

 𝜃𝜃𝑟𝑟+1″ (𝜂𝜂) = � 𝑏𝑏𝑖𝑖ℎ𝑖𝑖(𝜂𝜂).
𝑚𝑚−1

𝑖𝑖=0

 

Error! 
Bookmark 

not 
defined.(28) 

The lower order derivatives are obtained as follows by integrating Eqns. (27) and (28). 
 

 𝑓𝑓𝑟𝑟+1‴ (𝜂𝜂) = � 𝑎𝑎𝑖𝑖 �
2
𝑁𝑁2 𝑝𝑝𝑖𝑖.3(𝑁𝑁)−

2
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) + 𝑝𝑝𝑖𝑖,1(𝜂𝜂)�

𝑚𝑚−1

𝑖𝑖=0

+
2
𝑁𝑁2,

 

Error! 
Bookmark 

not 
defined.(29) 

 

𝑓𝑓𝑟𝑟+1″ (𝜂𝜂) =

� 𝑎𝑎𝑖𝑖 �𝑝𝑝𝑖𝑖.2(𝑁𝑁) − �
2𝜂𝜂
𝑁𝑁
− 1� 𝑝𝑝𝑖𝑖,2(𝑁𝑁) +

2
𝑁𝑁
�
𝜂𝜂
𝑁𝑁
− 1� 𝑝𝑝𝑖𝑖,3(𝑁𝑁)�

𝑚𝑚−1

𝑖𝑖=0

+
2𝜂𝜂
𝑁𝑁2 +

2
𝑁𝑁

 
(30) 

 𝑓𝑓𝑟𝑟+1′ (𝜂𝜂) = � 𝑎𝑎𝑖𝑖

⎝

⎜
⎛𝑝𝑝𝑖𝑖.3(𝜂𝜂) +

𝜂𝜂2

𝑁𝑁2 �𝑝𝑝𝑖𝑖,3(𝑁𝑁) −𝑁𝑁𝑝𝑝𝑖𝑖,2(𝑁𝑁)�

+𝜂𝜂 �−𝑝𝑝𝑖𝑖,2(𝑁𝑁) −
2
𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) + 2𝑝𝑝𝑖𝑖,2(𝑁𝑁)�

⎠

⎟
⎞

𝑚𝑚−1

𝑖𝑖=0

+
𝜂𝜂2

𝑁𝑁2 −
2𝜂𝜂
𝑁𝑁

+ 1 (31) 

 

𝑓𝑓𝑟𝑟+1(𝜂𝜂) =

� 𝑎𝑎𝑖𝑖

⎝

⎜
⎛𝑝𝑝𝑖𝑖.4(𝜂𝜂)−

𝜂𝜂3

3𝑁𝑁2 �−𝑝𝑝𝑖𝑖,3(𝑁𝑁) + 𝑁𝑁𝑝𝑝𝑖𝑖,2(𝑁𝑁)�

+
𝜂𝜂2

2 �−𝑝𝑝𝑖𝑖,2(𝑁𝑁) −
2
𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) + 2𝑝𝑝𝑖𝑖,2(𝑁𝑁)�

⎠

⎟
⎞

𝑚𝑚−1

𝑖𝑖=0

+
𝜂𝜂3

3𝑁𝑁2 −
𝜂𝜂2

𝑁𝑁
+ 𝜂𝜂 + 𝑠𝑠

 

(32) 

 𝜃𝜃𝑟𝑟+1′ (𝜂𝜂) = � 𝑏𝑏𝑖𝑖 �𝑝𝑝𝑖𝑖,1(𝜂𝜂) −
1
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁)�

𝑚𝑚−1

𝑖𝑖=0

−
1
𝑁𝑁

  , (33) 

 𝜃𝜃𝑟𝑟+1(𝜂𝜂) = � 𝑏𝑏𝑖𝑖 �𝑝𝑝𝑖𝑖,2(𝜂𝜂) −
𝜂𝜂
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁)�

𝑚𝑚−1

𝑖𝑖=0

−
𝜂𝜂
𝑁𝑁

+ 1, (34) 

where N is sufficiently large number. Substitute Eqns. (27) – (34) into Eqns. (24) and (25). By applying 
discretization on the Eqns. (24) and (25) and use the collocations points, 𝜂𝜂𝑐𝑐 = (𝑐𝑐+0.5)𝑁𝑁

𝑚𝑚
, 𝑐𝑐 = 0,1,⋯ ,𝑚𝑚 −

1 , we obtain the following systems, 

 � 𝑎𝑎𝑖𝑖𝐾𝐾1 = 𝐿𝐿1

𝑚𝑚−1

𝑖𝑖=0

, 

Error! 

Bookmark 

not 

defined.(35) 
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 � 𝑎𝑎𝑖𝑖

𝑚𝑚−1

𝑖𝑖=0

𝐾𝐾2 + � 𝑏𝑏𝑖𝑖

𝑚𝑚−1

𝑖𝑖=0

𝐾𝐾3 = 𝐿𝐿2, 
Error! 

Bookmark 
not 

defined.(36) 

where  

 

𝐾𝐾1 =

𝛽𝛽𝑓𝑓𝑟𝑟2ℎ𝑖𝑖(𝜂𝜂)− 𝑓𝑓𝑟𝑟 �𝑝𝑝𝑖𝑖,1(𝜂𝜂) +
2
𝑁𝑁2 𝑝𝑝𝑖𝑖,3(𝑁𝑁) −

2
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁)� − 𝑓𝑓𝑟𝑟�𝑓𝑓𝑟𝑟 + 𝜆𝜆𝑓𝑓𝑟𝑟 + 2𝛽𝛽𝑓𝑓𝑟𝑟"�×

         �𝑝𝑝𝑖𝑖,2(𝜂𝜂) +
2𝜂𝜂
𝑁𝑁2 𝑝𝑝𝑖𝑖,3(𝑁𝑁) −

2𝜂𝜂
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) − 𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

2
𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) +  2𝑝𝑝𝑖𝑖,2(𝑁𝑁)�+

     𝑓𝑓𝑟𝑟�2𝑓𝑓′𝑟𝑟 + 𝐻𝐻𝐻𝐻2 + 2𝜆𝜆𝑓𝑓′𝑟𝑟 + 𝜆𝜆𝜆𝜆𝑎𝑎2��𝑝𝑝𝑖𝑖,3(𝜂𝜂) + �
𝜂𝜂
𝑁𝑁
�
2
𝑝𝑝𝑖𝑖,3(𝑁𝑁)−

     
𝜂𝜂2

𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) −     𝜂𝜂𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

2𝜂𝜂
𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) + 2𝜂𝜂𝑝𝑝𝑖𝑖,2(𝜂𝜂)� �𝑓𝑓𝑟𝑟

‴ − 𝑓𝑓𝑟𝑟
′2 +

𝐻𝐻𝑎𝑎2𝐸𝐸1 −𝐻𝐻𝑎𝑎2𝑓𝑓𝑟𝑟
′ − 𝜆𝜆𝑓𝑓𝑟𝑟

′2 +    𝜆𝜆𝜆𝜆𝑎𝑎2𝐸𝐸1 − 𝜆𝜆𝜆𝜆𝑎𝑎2𝑓𝑓𝑟𝑟
′ + 𝛽𝛽𝑓𝑓𝑟𝑟‴

2 �   �𝑝𝑝𝑖𝑖,4(𝜂𝜂) +

𝜂𝜂3

3𝑁𝑁2 𝑝𝑝𝑖𝑖,3(𝑁𝑁) −
𝜂𝜂3

3𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) −    

𝜂𝜂2

2
𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

𝜂𝜂2

𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) + 𝜂𝜂2𝑝𝑝𝑖𝑖,2(𝑁𝑁)� ,                

 

Error! 
Bookmark 

not 
defined. 

 

𝐾𝐾2 =

2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑟𝑟"�𝑝𝑝𝑖𝑖,2(𝜂𝜂) +
2𝜂𝜂
𝑁𝑁2 𝑝𝑝𝑖𝑖,3(𝑁𝑁) −

2𝜂𝜂
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) − 𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

2
𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) +

2𝑝𝑝𝑖𝑖,2(𝑁𝑁)� −

2𝑃𝑃𝑃𝑃(𝜃𝜃𝑟𝑟 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎2𝑓𝑓𝑟𝑟′ + 𝐸𝐸𝐸𝐸𝐸𝐸1𝐻𝐻𝑎𝑎2)�𝑝𝑝𝑖𝑖,3(𝜂𝜂) + �
𝜂𝜂
𝑁𝑁
�
2
𝑝𝑝𝑖𝑖,3(𝑁𝑁) −

𝜂𝜂2

𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

𝜂𝜂𝑝𝑝𝑖𝑖,2(𝑁𝑁)−
2𝜂𝜂
𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) + 2𝜂𝜂𝑝𝑝𝑖𝑖,2(𝑁𝑁)� +

𝑃𝑃𝑃𝑃𝜃𝜃′𝑟𝑟 �𝑝𝑝𝑖𝑖,4(𝑁𝑁) +
𝜂𝜂3

3𝑁𝑁2 𝑝𝑝𝑖𝑖,3(𝑁𝑁) −
𝜂𝜂3

3𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

𝜂𝜂2

2
𝑝𝑝𝑖𝑖,2(𝑁𝑁) −

𝜂𝜂2

𝑁𝑁
𝑝𝑝𝑖𝑖,3(𝑁𝑁) +

𝜂𝜂2𝑝𝑝𝑖𝑖,2(𝑁𝑁)� , 

 

 𝐾𝐾3 = ℎ𝑖𝑖(𝜂𝜂) − 2𝑃𝑃𝑃𝑃𝑓𝑓𝑟𝑟′ �𝑝𝑝𝑖𝑖,2(𝜂𝜂) −
𝜂𝜂
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁)�+ 𝑃𝑃𝑃𝑃𝑓𝑓𝑟𝑟 �𝑝𝑝𝑖𝑖,1(𝜂𝜂)−

1
𝑁𝑁
𝑝𝑝𝑖𝑖,2(𝑁𝑁)� ,  
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𝐿𝐿1 =

2𝐻𝐻𝑎𝑎2𝐸𝐸1𝑓𝑓𝑟𝑟(1 + 𝜆𝜆) + 𝑓𝑓𝑟𝑟 �𝑓𝑓𝑟𝑟
‴ +

2
𝑁𝑁2� − 𝐻𝐻𝑎𝑎2𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′(1 + 𝜆𝜆)−

𝑓𝑓𝑟𝑟(2𝑓𝑓𝑟𝑟′ + 𝐻𝐻𝑎𝑎2 + 2𝜆𝜆𝑓𝑓𝑟𝑟′ + 𝜆𝜆𝜆𝜆𝑎𝑎2)�
𝜂𝜂2

𝑁𝑁2 −
2𝜂𝜂
𝑁𝑁

+ 1� −

�𝑓𝑓𝑟𝑟
‴ − 𝑓𝑓𝑟𝑟

′2 +𝐻𝐻𝑎𝑎2𝐸𝐸1 −𝐻𝐻𝑎𝑎2𝑓𝑓𝑟𝑟
′ − 𝜆𝜆𝑓𝑓𝑟𝑟

′2 + 𝜆𝜆𝜆𝜆𝑎𝑎2𝐸𝐸1 − 𝜆𝜆𝜆𝜆𝑎𝑎2𝑓𝑓𝑟𝑟
′ +

𝛽𝛽𝒇𝒇𝒓𝒓″
𝟐𝟐��

𝜂𝜂3

3𝑁𝑁2 −
𝜂𝜂2

𝑁𝑁
+ 𝜂𝜂 + 𝑠𝑠�+ 𝑓𝑓𝑟𝑟2 �1 + 𝜆𝜆 +

2𝛽𝛽
𝑓𝑓𝑟𝑟
𝒇𝒇𝒓𝒓″� �

2𝜂𝜂
𝑁𝑁2 −

2
𝑁𝑁
� , 

 

 

𝐿𝐿2 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝒇𝒇𝒓𝒓″

𝟐𝟐 + 𝐻𝐻𝑎𝑎2𝑓𝑓𝑟𝑟′2 − 𝐸𝐸12𝐻𝐻𝑎𝑎2� + 𝑃𝑃𝑃𝑃(𝜃𝜃𝑟𝑟′𝑓𝑓𝑟𝑟 − 2𝜃𝜃𝑟𝑟𝑓𝑓𝑟𝑟′)−

𝑃𝑃𝑃𝑃𝜃𝜃𝑟𝑟′ �
𝜂𝜂3

3𝑁𝑁2 −
𝜂𝜂2

𝑁𝑁
+ 𝜂𝜂 + 𝑠𝑠� −

2𝑃𝑃𝑃𝑃 �
1
2
𝜃𝜃′ − 𝜃𝜃𝑟𝑟 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎2𝑓𝑓𝑟𝑟′ − 𝐸𝐸𝐸𝐸𝐸𝐸1𝐻𝐻𝑎𝑎2��

𝜂𝜂2

𝑁𝑁2 −
2𝜂𝜂
𝑁𝑁

+ 1� −

4
𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝒇𝒇𝒓𝒓″ �

𝜂𝜂
𝑁𝑁
− 1� + 2𝑃𝑃𝑃𝑃𝑓𝑓𝑟𝑟′ �−

𝜂𝜂
𝑁𝑁

+ 1� +
𝑃𝑃𝑃𝑃
𝐿𝐿
𝑓𝑓𝑟𝑟  . 

 

To obtain Haar coefficients, 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖, Eqns. (35) and (36) can be solved simultaneously. 

 

4. Results and Discussions 

The nonlinear ODEs (6) and (7) subjected to the boundary conditions (8) were numerically solved by 
means HWQM. All the computations are carried out by using MATLAB.  

The numerical results for examining the surface friction coefficient and surface temperature 
gradient for different values of suction/injection parameter, 𝑠𝑠 and elasticity number, 𝛽𝛽 is shown as in 
Table 1. Referring to this table, the values of  𝑓𝑓"(0) and 𝜃𝜃′(0) are reduced as 𝑠𝑠 increases. Table 2 shows 
the comparison of the present results by comparing with the published results for various values of 
parameter with the Newtonian fluid, 𝛽𝛽 is equal to zero. A good agreement is obtained between previous 
results and present results for different values of 𝐻𝐻𝐻𝐻,𝐸𝐸𝐸𝐸,𝐸𝐸1 and 𝑃𝑃𝑃𝑃. 

 
Table 1  A table with variations of −𝑓𝑓″(0) and −𝜃𝜃′(0) when 𝐻𝐻𝐻𝐻 = 𝜆𝜆 = 0, 𝐸𝐸𝐸𝐸 = 𝐸𝐸1 = 1 and 𝑃𝑃𝑃𝑃 = 3. 

 
s −𝑓𝑓″(0) −𝜃𝜃′(0) 

𝛽𝛽 = 1 𝛽𝛽 = 2 𝛽𝛽 = 3 𝛽𝛽 = 1 𝛽𝛽 = 2 𝛽𝛽 = 3 
-0.5 0.06232022 0.18374761 0.10506315 1.78345485 1.82252559 1.87981412 
-0.3 0.02630196 0.36782901 0.11560706 1.94181132 2.08351599 2.07537062 
0.0 0.70909591 0.58066866 0.50469544 2.13955960 2.29268996 2.37501346 
0.3 0.74462245 0.59878632 0.51844900 2.58130462 2.76592253 2.85853625 
0.6 0.77445969 0.61380622 0.52987424 3.09771174 3.30931226 3.41034400 
1.0 0.80652589 0.62966799 0.54178347 3.88532509 4.12576487 4.23544956 

 
 
 
 
 

Table 2  Local Nusselt number −𝜃𝜃′(0) for various values of 𝐻𝐻𝐻𝐻,𝐸𝐸𝐸𝐸,𝐸𝐸1 and 𝑃𝑃𝑃𝑃 when 𝛽𝛽 = 0. 
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Figures 1 and 2 depict the velocity and temperature profiles for various values of 𝛽𝛽 and 𝐻𝐻𝐻𝐻. When 
𝛽𝛽 = 0 , the fluid becomes the Newtonian fluid because the elastic force disappears. It is clear that with 
the increase of  𝛽𝛽 for a few values of 𝐻𝐻𝐻𝐻, the velocity distribution shows increasing behaviour. 
Additionally, the thickness of the momentum boundary layer decreases with an increase in 𝐻𝐻𝐻𝐻. 
Physically, due to the presence of electromagnetic force given by 𝐻𝐻𝐻𝐻, the flow velocity has been retarded  
at any point of boundary layer. Characteristics of 𝛽𝛽 on the temperature distribution is displayed in Fig. 
2. For 𝐻𝐻𝐻𝐻 = 1 and 2, the temperature distribution increases for large values of 𝛽𝛽, as shown in Fig. 2(b) 
and Fig. 2(c). The increase parameter of  𝛽𝛽 corresponds to larger relaxation time which provides 
resistance to the fluid motion, hence as a result more heat is produced. Therefore, temperature 
distribution increases. In contrary, Fig. 2(a) reveals that when 𝐻𝐻𝐻𝐻 = 0, the temperature distribution 
decreases as 𝛽𝛽 increases.  

Figures 3(a) and 3(b) show the velocity and the temperature profiles with respect to the 
suction/injection parameter, 𝑠𝑠. The fluid velocity and temperature field are found to decrease with 
increasing value of 𝑠𝑠. Suction (𝑠𝑠 > 0) causes to decrease the velocity of the fluid in the boundary layer 
region. This effect acts to decrease the wall shear stress. On the other hand, increase in suction causes 
progressive thinning of the boundary layer.  

The influence of Pr on temperature profile is shown in Fig.4. It is observed that an increase in Pr 
leads to reduction in temperature and thermal boundary layer thickness. It should be noted that the 
thermal diffusivity is weaker for larger Pr due to the fact that the rate of diffusion decreases.  

 

 
 

Fig. 1.  The velocity profile for different values of 𝛽𝛽 when 𝑚𝑚 = 128,𝑁𝑁 = 10,𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑃𝑃 = 𝜆𝜆 = 𝑠𝑠 = 1, 
𝐸𝐸1 = 0 and 𝐻𝐻𝐻𝐻 = 0, 2. 

 

0 2 4 6 8 10

f

0

0.2

0.4

0.6

0.8

1

Ha = 0

Ha = 2

 = 1, 2, 3

𝐻𝐻𝐻𝐻 𝐸𝐸𝐸𝐸 𝐸𝐸1 𝑃𝑃𝑃𝑃 Pal & Mondal [22] Ahmad & Wahid [28] HWQM 
(Present Method) 

0 0 0 3 2.509715 2.5097 2.50972924 
5 3.316479 3.3164 3.31644910 

1 1 3 1.745111 1.7451 1.74508913 
5 2.219381 2.2193 2.21933272 

1 1 1 3 2.227830 2.2277 2.22964763 
5 2.916217 2.9160 2.91291680 

0 3 0.459953 0.4600 0.46004010 
5 0.366367 0.3666 0.36651854 
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(a)                                                                                            (b) 

 
(c) 

 

Fig. 2.  The temperature profiles for (a) 𝐻𝐻𝐻𝐻 = 0  (b) 𝐻𝐻𝐻𝐻 = 1 (c) 𝐻𝐻𝐻𝐻 = 2  when 𝑚𝑚 = 256,𝑁𝑁 =
10,𝐸𝐸𝐸𝐸 = 𝜆𝜆 = 𝑠𝑠 = 1  𝛽𝛽 = 1, 2, 3, 4 , 𝑃𝑃𝑃𝑃 = 3 and 𝐸𝐸1 = 0. 
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(a)                                                                                   (b) 

Fig. 3.  The velocity and temperature profiles  for  (a) impermeable surface and suction  (b) injection 
when 𝑚𝑚 = 256,𝑁𝑁 = 10,𝐻𝐻𝐻𝐻 = 𝐸𝐸1 = 0,𝐸𝐸𝐸𝐸 = 𝛽𝛽 = 𝜆𝜆 = 𝑃𝑃𝑃𝑃 = 1. 

 

 
Fig. 4.     The temperature profile for different values of 𝑃𝑃𝑃𝑃 when 𝑚𝑚 = 256,𝑁𝑁 = 10,𝐸𝐸1 = 𝐻𝐻𝐻𝐻 =

0,𝐸𝐸1 =  𝜆𝜆 = 𝑠𝑠 = 1. 
 

5. Conclusions 

The numerical analysis for heat transfer of a Jeffrey fluid flow past a stretching sheet with ohmic 
dissipation effect and suction/injection parameter is numerically studied by using HWQM. The results 
can be summarized as follows: 
a)  the velocity increases as  𝛽𝛽 increases but it has opposite effects on temperature field, for 𝐻𝐻𝐻𝐻 = 0, 
b)  temperature profile decreases as Pr increases and the temperature boundary layer becomes thinner,   
c)  the velocity and temperature distributions decrease on increasing the value of s, 
d)  𝑓𝑓"(0) decreases when suction/injection parameter increases. 
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