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Abstract

Estimating functions have been used in estimating parameters of many continuous time se-
ries models. However, this method has not been applied to models involving count data. In
this paper, we use quadratic estimating functions (QEF) to derive estimators for the joint es-
timation of the conditional mean and variance parameters of count data models, specifically
the basic zero-inflated Poisson (ZIP) model, ZIP regression model and integer-valued general-
ized autoregressive heteroscedastic model with ZIP conditional distribution. Results show that
the estimators derived from QEF method, which uses information from combined estimating
functions, is more informative than linear estimating functions (LEF) method that only uses
information from component estimating functions. Finally, we also fit the real data sets using
the ZIP models via QEF, LEF and maximum likelihood methods, and in so doing, demonstrate
the superiority of the QEF method in practice.

Keywords: Count data; information matrix; linear estimating functions; quadratic estimating

functions; zero-inflated Poisson

1. Introduction

Count data are frequently encountered in many
biomedical, epidemiological, industrial and
public health applications. In practice, espe-
cially in the medical field, many count data sets
have a high frequency of zeroes. For example,
for diseases with low infection rates, the ob-
served counts typically contains a large num-
ber of zeroes, although the counts can also be
very large during the outbreak period. For such
data set, Lambert (1992) introduced a zero-
inflated Poisson (ZIP) regression model. His
study showed that the ZIP model is not only
easy to interpret, but also leads to more refined
data analysis as it can accommodate overdis-
persion.

Following the findings, many studies and
applications of the ZIP model have been con-
ducted. For instance, Baksh er al. (2011)
proposed the overdispersion test for the ZIP
model, while Zhu (2012) introduced the model
inspired by the generalized autoregressive con-
ditional heteroscedastic (GARCH) model. In
the GARCH model, the integer-valued case
with a conditional distribution has ZIP distri-
bution instead of normal distribution. It is

denoted as denoted as ZIPINGARCH (p, q),
where p and ¢ are positive integers.

The maximum likelihood (ML) method
is commonly used for estimating the pa-
rameters of ZIP models when the distribu-
tion of the data is known. However, the
method does not always perform well un-
der certain circumstances, see for example,
Bahadur (1958), Crowder (1987) and Vinod
(1997). Furthermore, as pointed out by Nan-
jundan and Naika (2012), the ML estimator
of ZIP models does not have closed-form ex-
pression. Therefore, various estimation meth-
ods have been proposed as an alternative to the
ML method. Some of these are a recursive
technique based on the two-step least squares
estimator (Abaza, 1982), Monte Carlo EM
method (Chan and Ledolfer, 1995), method of
moments (Kharrati-Kopaei and Faghih, 2011)
and quasi-likelihood (Staub and Winkelmann,
2012).

The semiparametric approach based on
the theory of estimating functions (EF) (Go-
dambe, 1985) has been proposed to estimate
the parameters of time series models. The
EF approach uses the information based on
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the first two conditional moments, which is
known as linear estimating functions (LEF).
This method has been successfully applied
in continuous time series models, see Tha-
vaneswaran and Abraham (1988), Chandra
and Taniguchi (2001), Bera et al. (2006),
Merkouris (2007), Allen et al. (2013) and Tha-
vaneswaran et al. (2012 & 2015). Meanwhile,
the advantages of the LEF method have been
highlighted in many papers, Bera et al. (2006)
stated that the LEF approach is a sufficiently
flexible moment-based estimation method. It
is very useful in econometric applications. In
addition, Godambe and Heyde (2010) showed
that the LEF estimator yields asymptotically
the shortest confidence interval. Moreover, Ng
and Peiris (2013) found that the LEF method
is more computationally efficient and easy to
apply in practice than the ML method. They
also argued that the LEF method is easier to
evaluate, and estimates can be obtained with-
out the requirement of the assumption of the
distribution of errors.

Liang et al. (2011) extended the LEF
method to the quadratic estimating functions
(QEF) method, which involves the first four
conditional moments. Their results showed
that the QEF method is more informative than
the LEF method and gives lower standard er-
rors of the estimated parameters. Furthermore,
Thavaneswaran et al. (2015) showed that, this
extension leads to an improvement in terms
of the efficiency of resulting estimate. It has
standard asymptotic properties, such as con-
sistency and asymptotic normality. The QEF
method also removes the problem of identifi-
ability. On top of that, the Monte Carlo sim-
ulation results presented in Ng et al. (2015)
also showed that the QEF estimators outper-
form the LEF estimators in almost all cases
when applied on the autoregressive conditional
duration model.

To our knowledge, the QEF method has
never been applied to count data models.
Therefore, it is in our interest to investigate
the performance of the QEF method as an al-
ternative method in the parameter estimation
of these models. We have derived the opti-

mal estimating functions of QEF for the three
types of ZIP models, namely the basic ZIP, ZIP
regression and ZIPINGARCH(p, ¢q) time se-
ries models. We also obtained the information
for these ZIP models and then compared them
with that from the LEF method. Concurrently,
the QEF, LEF and ML methods were applied
into real data sets to estimate the model param-
eters together with their respective standard er-
rors. The Akaike information criterion (AIC)
and Bayesian information criterion (BIC) val-
ues were calculated to determine the best fitted
model.

This paper is organized as follows: Section
2 discusses the theoretical basis for the QEF
and LEF methods. In Section 3, we use the
QEF method to derive the optimal estimating
functions and the information for the three ZIP
models. The applicability of the QEF method
on empirical examples is presented in Section
4. Finally, concluding remarks are given in
Section 5.

2. Parameter estimation methods
This section discusses the LEF and QEF esti-
mation methods.

2.1 Linear estimating functions
Godambe (1985) introduced the estimating
functions approach to estimate the parameters
of linear and non-linear time series models.
Let {y;} be a discrete time series pro-
cess depending on a vector parameter @ that
belongs to an open subset ® of the p-
dimensional Euclidean space. Let Y ;| be the
o-field generated by {y1,y2, ..., y;—1} for t >
1. Consider a g-dimensional vector h, =
h,(y1,y2, .., y4—1,0) for 1 < t < n which is
a martingale difference and let a,_; be p X ¢q
matrices depending on {yi,vs,...,y;—1}. Let
901 be the set of p-dimensional estimating func-
tions g,,(0)

M = {£,(0) : £,(6) = > a b} (D

An estimate of @ can be obtained by solving
the equation g,(€) = 0. Godambe (1985)
assumed that the estimating functions g, (6)
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are almost surely differentiable with respect to
the components of 8 so that & [8'” |\sf_1} and
E [g,(0)g,(0)|S?_,] are nonsingular for all 8
for each ¢t > 1. Moreover, the p X p matrix

E [g,(0)g

1,(0)|3Y_, ] is assumed to be positive
for all . Therefore, the optimal g; (0) is given

by
> aih
t=1

n 8h /
S (e[
x (E {hh})|3Y_}) " hy,

and the corresponding optimal information

matrix is
n 8ht /
1,0) = > (Bl 10)
t=1
x (B [hhi]SE,])
ohg
X (E[ae Y 1]) .
2.2. Quadratic estimating functions
Here we assume that the discrete time stochas-
tic process {y;} has the following conditional

moments that depend only on the parameters
0. These are

g,(0) =

-1

e(0) = ElylST_q],
0;(0) = El(y: — 1:(0))%S7_4],
1 3|y
%(0) = U?(G)E[(yt—#t(e)) R
1 4|1y
ri(0) = WE[(% — 1(0))7S¢4] — 3.

We intend to estimate the parameter 6 us-
ing two classes of martingale differences

{mt(e) =Yt — lut(e)vt = 1727 7n} 9 (2)
{5:(0) = m{(0) —07(0),t =1,2,....,n}, (3)
such that

(m)y E[m;(6)|S7_,]
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The optimal estimating functions based on
the martingale differences m,(0) and s,(0) are

. " O (8) my(6
.0 = =S T
s6) = - > 2r =,

respectively. The information associated with
g* (0) and g*(0) are given as

— 0ui(0) O (8) 1

I;.(0) ; 00 90" (m),
B 00?(0) 80?(0) 1

I::(6) = 00 00" (s),’

t=1

respectively. The optimal QEF and its cor-
responding information matrix are given by
Liang et al. (2011) in Theorem 1.

Theorem 1: In the class of all QEF of the form

Gq = {gQ(e) = Z (a—1m(0) + bt—lst(e))} ;

(a) the optimal estimating function is given by

n

g,(0) = Z(a:—lmt(e) +b;_15:(60)),

t=1
where a; |, = R, and b; ; = R20;;
(b) the information matrix Iy (6) is
- Ny Vi )
0) = Ry +—+-+—+ — K );
=22 (G *

(c) the gain in information I
- Ig;*n (9)
- (m,s)i Vi )
= R <N + — Ky |;
; UM s (e

i, (0) — L (0) is

g5 (0) — I, (0) is

Ig*Q (0)

(d) the gain in information I

I (60) —1,:(0)

=3 m (qa;
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Whe_re Ri;t(e) ma)t <9>’ (m, 5).
Qt_( M <m>t<8>t)

00 (m),
O (0) (<m,>s>t 80?(0) 1
mt:( ~ o8 <s>t>’

80 <m>t<8>t
N, — Op1e(6) Opu(6) vV, — 9o} (6) 9o} (0)
| o (%)9/8 ’2(;) 55902(9) 580/(9)
_ Mt O T Mt
Kt“]t< 20 00 00 00 )
Wlth 31‘, == <m7 S>t

(m)i(s):

3. Zero-inflated models

There are three types of ZIP models con-
sidered:  basic ZIP, ZIP regression and
ZIPINGARCH(p, q) time series models. Let
us define the probability mass function (pmf)
of a zero inflated count data model as

_ Jw+ (1-w)g(y)
T = {(1 —w)g(y)

where y is a count-valued random variable,
w € [0,1] is a zero-inflation parameter (the
probability of a strategic zero), and g(-) is the
probability function of the parent count model.

The mean of the zero-inflated count data
model is

fory =0,

fory=1,2,3,...,(4)

ny

where F,(y) denotes the mean of the parent
distribution. A full parametric zero-inflated
count data model is obtained once the prob-
ability function of the parent count model is
specified. For the next three subsections, we
will illustrate the three ZIP models.

(1 —w)Ey(y),

3.1 Basic ZIP model
The pmf for this model can be obtained from
equation (4) by letting

exp(—A)A\Y
9(y; A) = # A >0,
y!
with mean Ey(y) = A, 1(0) = E [y|SY_,] =
(1 — w)Xand 1(8) = B [12[SY,] = A(1 —
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w)(A + 1). The parameter of interest for this
model is 8 = (), w)/. Following Kharrati-
Kopaei and Faghih (2011), we define two mar-
tingale differences, m;(0) = y; — pu1(0) and
Si(0) = y? — uz(0), respectively. Using the
results, the elements of variance-covariance of
martingale differences are defined as

o = Var [yt \St 1}
= (9) (1+X) = (1(9)),
012 = CLov [ytyt R 1}
= ()()\2+3)\+1—u1(0)(1+)\))
022 Var AR
= 1w (0) (X + 6N+ TA+ 1 — 1 (0) (1 +N)°).
It is easily shown that (m); = 011, (S); =
o9 and (m,S); = o12. The derivatives of
11(0) and p2(0) with respect to 6 are
6#1(0) . ’
80 - (1 W, >\) )
Ou2(0)

—(A+2AY).

22 = (1 —w)L+2)),

From Theorem 1, the optimal QEEF for each pa-
rameter \ and w are given by

c— ) > i

011022 — 079

ng(w)IA< ! 5 )im

011022 — 079

g = (1-w)

respectively, where

Jig = ( —093 + 012H1, )mt(
012 — 011H1,t ) St(o)
029 — Hy 1019 ) mt(e +

o11Hay — 012 ) St(g):
with Hy;, =1+2 and Hyy =1+ A.

The corresponding information matrix of 6
is

(
Jop = (
(

[);Q)\ I)?w
@ = | ]
n(l—w)’E, nA2L,
where I¥ = 7 8 = Fo
and symmetrical elements, ]52)\ = Ifw =
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A1l —w)P,
% such that Et = 022 —+
t
Hl,t (H1,t011 - 2012) 7Ft = 011022 —
0ty Ly = 095 + 011H227t — 2Hy,012, P =

—0922 — 011 (1 —+ 3\ —+ 2/\2) “+ 019 (2 —+ 3)\) .

For simplicity, we only compare the in-
formation for the parameter A. Hence, the
information gain by estimating functions for
martingale differences, m;(0) and S;(0) are
I =n(l—w)?/oy; and I, = n(1—w)?(1+
2)\) /o011, respectively. It is noted that the value
of the denominator of / g\ is small when the nu-
merator is large, leading to a greater value of
1nformat1on gained when compared to /73 and
I3, ie, I¢ > I and IS, > I$,. Hence, one
can say that, the combined estimating func-
tions is more informative than the individual
elements.

3.2 ZIP regression model
We consider the ZIP regression model. In
some cases, we may parameterize both A and
w in terms of exogenous explanatory vari-
ables, say x and z. Following the definition
given by Staub and Winkelmann (2012), we
assume that A exp(Ao + \iz) and w
exp(dp + d12)

1+ exp(do + 612)
to x, overlap with z, or be completely distinct
from z.

The parameter is @ = (g, A1, do, 51)/ and
the conditional expectation function of the cor-
responding ZIP model is given by

, where z can be identical

exp(Ao + A1)
1+ exp(dp + 012)°

E(y |z z) = (5)

Here, we let independent counts to be
Yy, wheret = 1,2,...,n, with \; and w; com-
ing from A and w as mentioned above. Hence,
the conditional mean, variance, skewness and
kurtosis are defined as

exp(Ao + A1xy)
1+ exp(do + 012¢)’
exp(Ao + A1xy) Ty
[1+ exp(dp + 12,)]2

11:(0)

o7 (8)
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3
pe [1+ Apwy]?
F
(1 — wt) )\t (1 + wt)\t)z,
respectively, where Fy, = w; A} (6w? — 6w, + 1)+
6wiA? (2wy — 1) + TwAy + 1 and Ty = 1 +
exp(do + 612¢) + exp(Ao + Ay + o + 012¢).
The derivative of (@) with re-
spect to each parameter is Ou(0)/00
(B1, B2, Bs, By) , where
exp(Ao + A\1zy)

7:(0)

ke (0)

e = 1+ exp(do + d12;)’
exp(Ao + A\ixy)xy

By = ;
1+ exp(do + 612¢)

By, —— exp(Ao + A\1x; + 0o + 012;)

’ (14 exp(dp + 012)]>2

By, — exp(No + Aixy + 0 + 012¢) 2

’ [1 + exp(do + d12¢)]?

Now, let T, = 1/(no}(0)) D,
where 7, = r(0) + 2 — ~+7(0), and
D, = —07(0) (ke(0) +2— (1+ Mwr)) +
710:(6)(Ye—1(0)) (1 + Aoy + (Ve — 1(6))) —

o3(0)v(0) witht =1,2,--- | n
The optimal QEF for Ay, A1, dp and 9, are
respectively

g*Q()\O) = ZTtBlb gQ ZTtBZta
t=1
g5(d) = ZTtBS t, 8o(01) ZTthit

t=1

The corresponding information matrix for
0 based on the QEF method is therefore

I (60) = i(%)

=1

O't(e) W
X (6)
( —2% 0)Wt =
where
B}, B Bs; Bi1;Bs; Bi:Bay

3, = ByyBiy B3, DBo;Bsy Bj;Buy

‘ Bs;B1y BsyByy B3, Bs;Buy

BytBi1; By4Byy ByyBs, Bj,

and W, — exp (Ao + A1xy + 9o + 012)

exp (0p + d12¢)
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For the purpose of comparison, we focus
only on the parameters \y and A\; with the
information gained by the use of estimating
functions based on the single element of mar-
tingale differences, m;(0) = y; — n:(6) and
5:(0) = m?(0) — c2(0). For m.(8), the in-

formation matrices based on the parameter \
are

I/r\r(L)Ao Z B / o) t
and

Iy, = Z B2,/0%(0

While for s,(0), we have

Lore = > W B,
i—1
and .
I, =Y IWW?B3,,
where h; = [1/{0?(;:)1(mt(9) + 2)}]. Through

the derivation of the information matrix in
equation (6), we have the following results,
Q Q

whege LYo > Dong arz)d ¥\, > I3, @s well
as Iy"y, > I3}y, ar}d Iy, > 13}, Therefore,
for the ZIP regression model, we can conclude
that the information acquired using the QEF
method is more informative than that of its lin-
ear components.

3.3 ZIPINGARCH(p, q) time series model

In this last part, we focus on the model ana-
logues to the GARCH(p, q) model with its
conditional distribution following ZIP. The
model is denoted as ZIPINGARCH(p, q) . Let
1 denote a count time series with excess ze-

roes conditional on SY_; and modeled by

A(0) for Yy = 0,

w+(1l—w)e”
p (ytlgg—l):{(l —w) e X’(Q)D\t(ﬂ)]w

Here, A\;(0) is the intensity parameter
based on the baseline Poisson distribution and
w is the zero-inflated parameter with \,(0) de-
fined by Zhu (2012) as

P q
A(0) = ap + Z QGYt—i + Z BiAi—;(0)
i=1 Jj=1

for y; > 0.
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Suppose that the observations Y
(y1,¥2, - .., Yn) are generated from the model.
Then, 0= (w, Qp, A1, ..., Qp, 61,52, ey, Bq)l.
The mean, variance, skewness and kurtosis of
y, conditional on Y _; are

1(0) = (1—w)A(0),
2(0) = (1—w)A(0)(1+wA(6)),
w(2w + 1) [A(0)]* + 3w (0) + 1
(0) = 1/2 3/2
O @ L+ wn (@)
ke (0) = T ,

(1 —w)A(0) [1 + wA(0)]

w(bw? — 6w +
(O] 7w ()41
— 114(0) and s,(0)

respectively, where <
1) [M\(0)]* +6w(2w—1) [A

By taking m;(0) = v,
m2(0) —c2(0), we have (m); = 02(0), (s); =
0/ (0)(k:(0) + 2) and (m, s), = 07(0)7,(0).
For the derivatives of the 1;(0) and 0Z(0) with
respect to 6, we have

oN(0
~\(0), (1 —w>$7...,
aﬂt(e) 8&(9) ( )
= 1 —
=8 (1 -w)———= aap (11— ) o ,
0B,
— < A1t>A2ta ) >
Agp N2 41) A(4,q),t ’
0
0
do2(6) _ Ctaxt(a)
00 day,
8)\t (’jb\t( )
,C :
S 58, )
_ < Sltatha "'aS(?),p),ta >,
: S(‘hq),t ’
where C; = (1 — w)(1 + 2wA(0)). Now,
m Ay m Ske{m, s)y
o A_< (m)e S’“’t <”g>t<s>t ’
pr, = LTS L and QV ~ 2kt and
k.t <m>t 5>t Qk,t <3>t
(m, s)

i
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From Theorem 1(a), a; ; and b;_, are AviAas | S5
given in matrix form by (m)e (s)1
L Z B o ArpSaut § ,
. o Sieds, )
. Al s Snllt’ o Al _'_5(3 1) v [ AriA@ae | S1eSE0) ]
a,_, =hB A(3p)t+33p)t’A(41 (m) (s)
gm AT ST ZBt Rk KS
(s Al T Sl / Lwes B ( A1 S0t ) ’
Plv,t + quj,w ctt P(%J)’t + Q€3,1),t7 B Sl,tA(S,i),t ]
bzll = Bt ey P(%,p),t —|— Qz)g p) ) P(lil 1),t+ . Al,tA(4,i),t + Sl,tS(4,i),t
[IRINIEE + QY (m) (s)
(4,1),t Plla (4,9). B ¢ ¢
Wﬂa Z t B A1,t5(4,z‘),t+ 13 ’
. . . S1eA @t !
Thus, the optimal estimating functions for A A g.. g -
each component of 0 are " (3<’Z)’t> 2t (3%’)’; 2t
Ia a; — B T S )
00 tz:; t B ( Az’tS(g’i)’t—F >§t
ot () = i ( (A’f?t + Sf‘t) m.(0) ) i So 1 A3t i
@ —~ \ * (PP, +QY,) s:(6) . Ay tA 4 Sa.g).t52,
. n (Aént 4+ Sént) mt<9) Iaoﬁ' — ZBt <m>t <S t ,
ACOED ( # T & _( A2Sagat
t=1 (P2 1T t) 51(0) =t i Sot Aag) e b
() i (A"% et SEa, t) my( ; AsiiAane  AspSai.e
gQ ;) = ) <m>t <3 ¢
— P ) Ls =S B
=\ " ( (it T Qi St(e = tZ1 ' _ A(3,z‘),t5;(14,j),t+ §
S(3. ;
for i =1,2,...,p, and (82422 (4.5).0
. n (Az]) .+ 5(4]) t) m(0) with the symmetrical elements, /,,, = loows
gQ(ﬁ]) - Z + (Pv + Q ) s (0) ’ [wai - Iaiwa [wﬁj - I,Bjo.u Iaoai - Iaiam
t=1 (4.9):t (4.9),t ) ¢ Lnos; = Igja0r lawg;, = Ipja, and & =
<ma S>t

for j=1,2,....q. ALy
(m)i(s)e
Again, we compare the information only
The corresponding information matrix of fF)r parameter A\;(0). Using estimating fur}c—
the optimal QEF for @ isa (p + g + 2) x (p+ 1ons b.ased on'mt(e) = W= 114(6), t_he mn-
¢ + 2) matrix with the elements are given by ~ formation matrix Tg; (6) is computed with the

elements
g AR, 512
Iww - Bt |:—’ + — 2A1 tsl tgt :| ) a o A /U
n AQ 5«2
Iaoao = Z Bt |:<7n—17>t + <5’2> 2142 tS2 tft :| )
t=1 i} 2t t ) a cz2 Z A t/o-t
n A(3,i),t 4 S(3,i),t
loa; = Z B, <m>t <3>t ’ and
t=1 | —2A(3,0),653,0),66
n [ A%ﬁl]) t 5(24,j),t [gJLBJ Z A t/o-t
Ig,8, = ZBt (m). ()¢ ’ Lo ) . .
t=1 | —2A4).6545) & Similarly, the information matrix I4.(6) for
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component s;(6) are

E 2
Ozoao DtSQ 6

Lo =Y DiS3,,
=1
and
Iggﬂj - Z Dtsit
=1

where D; = [1/ (c}(0)(k:(0) + 2))].
From the information using the QEF
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Therefore, we can suggest that the QEF is
more informative than the component estimat-
ing functions for the ZIPINGARCH(p, ¢) time
series model.

4. Applications

This section discusses the applications of the
QEF method on the ZIP models using two real
data sets.

4.1 Basic ZIP model

By adopting a count data time series
from the Forecasting Principles site at
http://www.forecastingprinciples.com, the

data represent 144 monthly counts of arson in

method and  information yia_ its compo- e 3¢h police car beat in Pittsburgh, Pennsyl-
ngnts mt(enz and 515(9), lts 18 clezg that  yania, USA from January 1990 until December
Igvao = Lagay Iahae > Lagao >Q aia; ~  2001. The data have 54 zeroes, i.e. 37.5% of
I3, If;iai > Lo 1 BiB; = the series. The plot of data is given in Figure
m Q S

Igls, and I > 15 5. 1.

AN | | |

sl | | I i

L0

ng\w A e e 1 I | I U | iy i

i /M VUYL N qH A \H‘ H ‘HOF - i

VN | | \ |

S U‘JU’J\/V\HU“'H/W i wr’“u\“m"”\m “ﬂ x\ H‘H“ I

os ‘\ ‘\' I ‘/ \/ ‘ ' HH\ ‘u W\‘ | / \\’ H / \ \H\‘ \ / ‘/\\' ‘/\ /\ 7

\ L1 ‘h L \\\’ M\“\KV ‘ ‘\ V \“V‘H [

Jan 1990 Nov 1990 Sep 1991 Jul 1992 May 1993 Mar 1994 Jan 1995 Nov 1995 Sep 1996 Jul 1997 May 1998 Mar 1999 Jan 2000 Nov 2000 Sep 2001
Date

Fig. 1. Monthly counts of arson in the 13th police car beat in Pittsburgh from January 1990

until December 2001

We fitted the basic ZIP model on the data
and estimated the parameters using QEF, LEF
and ML methods. Using R-CRAN program-
ming language, the ML estimates can be ob-
tained by maximizing the likelihood of the

model through a nlminb function, while for
QEF and LEF methods, their estimates were
obtained by solving their respective simultane-
ous optimal estimating functions via a nlegsv
function.

Table 1. Parameter estimates, AIC and BIC for basic ZIP model. Values in parenthesis are

standard errors of parameter estimates

Method A w AIC BIC
QEF 1.156(0.031) 0.075(0.015) 455.82 621.03
LEF 1.159(0.054) 0.089(0.018) 458.14 627.35
ML 1.158(0.032) 0.083(0.018) 458.68 624.28
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Table 1 reports the estimated parameters,
estimated standard errors, AIC and BIC for
ZIP models using three different estimation
methods. We observe that the standard er-
rors of QEF estimates are lower than those of
LEF and ML estimates. In addition, the basic
ZIP model with QEF estimates gives the low-
est AIC and BIC values. This indicates that a
model with QEF estimates gives a better model
fit for arson data than the model with LEF and
ML estimates.

To assess the performance of these QEF
estimates to LEF and ML estimates, a simu-
lation study was carried out. We use a block
bootstrap method provided by R-CRAN pro-
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gramming language: tseries package and ts-
bootstrap command with m=20 blocks to form
a new series and estimate the model param-
eters of the new series using QEF, LEF and
ML methods. The procedure is repeated for
nb=500 replications and the summary statis-
tics: mean, bias, standard error (SE) and root
mean squared error (RMSE) for each param-
eter are computed. The simulation results are
shown in Table 2. We observe that the QEF
estimates give lower estimated bias than LEF
and ML estimates. In addition, the estimated
SEs based on simulation are consistent with
the empirical results for all three methods as
shown in Table 1.

Table 2. Simulation results based on bootstrap method for basic ZIP model

Method | Estimated parameter | Mean | Bias SE | RMSE

QEF A 1.192 | 0.037 | 0.031 | 0.048

w 0.079 | 0.004 | 0.014 | 0.015

LEF A 1.227 | 0.068 | 0.053 | 0.086

w 0.079 | 0.010 | 0.017 | 0.020

ML A 1.196 | 0.038 | 0.033 | 0.051

w 0.077 | 0.006 | 0.019 | 0.020
In order to check the model ade- as given in Table3also indicated that there is
quacy for the basic ZIP model based no significant serial correlation in the resid-

on QEF estimates, the Pearson residual
is computed which is defined as ¢ =

(- 1 =DA) VAT —@)(1+4). We
found that the mean and variance of Pearson
residuals are 0.083 and 0.956, respectively.
These values are relatively close to zero and
unity indicates that the data is adequately fitted
to the model. The Ljung-Box (LB) test results

ual. This shows that the data fit well using the
basic ZIP model with estimated parameters,
\ and @, say ZIP (5\,@) Furthermore, Fig-
ure 2 shows that the cumulative periodogram
plot (see Brockwell and Davis (1991)) does
not cross the dotted line. Therefore, we can
conclude that, the basic ZIP model via QEF

estimates gives a better fit for the arson data.

Table 3. Diagnostics for basic ZIP model

LBso(e;) LBsg(€?)
X2 23.6 30.4
p-value  0.785 0.477

4.2 Z1P regression model
For the ZIP regression model, we consider data

from the National Medical Expenditure Sur-
vey concerning medical care utilization by the
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Cummulative periodogram

Frequency

Fig. 2. Cummulative periodogram plot

older American conducted in 1987 and 1988
in the United States. The data set included
4406 people above the age of 66 years that
were covered by medicare. The data is avail-
able at http://qed.econ.queensu.ca/jae/1997-

v12.3/deb-trivedi/. The number of patients
with chronic conditions (x) and the number of
doctor visits in a hospital (y) were the only two
variables included from the data (Figure 3).
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Fig. 3. Number of doctor visits in hospital versus number of patients (> 66 years) with chronic

conditions

The estimated parameters together with
their standard errors using all three methods
are shown in Table 4. It is clear that the es-
timates using the QEF method give the low-
est standard errors when compared to the other
two methods. Furthermore, the QEF method
produces lower AIC and BIC values than LEF
and ML methods. This indicates that the ZIP

regression model using QEF estimates gives
the best model. For the simulation study, we
use the same procedure as described in Sec-
tion 4.1 (see Table 5). We obtain the same
conclusion as discussed in Section 4.1. First,
QEF estimates give the smallest bias. Second,
the standard errors based on the simulation are
consistent with the empirical results in Table 4.
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Table 4. Parameter estimates, AIC and BIC for the ZIP regression model. Values in parenthesis

are standard errors of parameter estimates

Method o A 5o o AIC BIC
QEF  0.531(0.010) 0.119 (0.015) 0.125 (0.081) 0.189(0.013) 1258.36 1425.98
LEF  0.541(0.014) 0.117 (0.021) 0.129 (0.086) 0.193(0.015) 1262.23 1428.33
ML  0.532(0.013) 0.121 (0.018) 0.127 (0.081) 0.190(0.013) 1260.11 1426.05

Table 5. Simulation results based on bootstrap method for ZIP regression model

Method | Estimated parameter | Mean | Bias SE | RMSE
Ao 0.547 | 0.016 | 0.010 | 0.019
QEF i 0.122 | 0.003 | 0.016 | 0.017
do 0.183 | 0.058 | 0.081 | 0.100
61 0.188 | 0.001 | 0.013 | 0.014
Ao 0.559 | 0.018 | 0.015 | 0.023
LEF i 0.127 | 0.010 | 0.021 | 0.024
5o 0.237 | 0.108 | 0.087 | 0.174
o1 0.186 | 0.007 | 0.015 | 0.016
Ao 0.552 | 0.020 | 0.013 | 0.024
ML i 0.129 | 0.008 | 0.019 | 0.021
b0 0.246 | 0.119 | 0.082 | 0.145
o1 0.188 | 0.002 | 0.013 | 0.015

4.3 ZIPINGARCH(p, q) time series model

For this model, a similar data set as men-
tioned in Section 4.1 was used. We obtain
the parameter estimates, standard errors and
AIC and BIC values for ZIPINGARCH (1, 1)
model via QEF, LEF and ML estimates (see
Table 6). The standard errors of the QEF es-
timates give comparable results with the ML
method, but they are lower than the LEF
method. The ZIPINGARCH (1, 1) model us-
ing QEF method gives the lowest AIC and BIC
values compared to the LEF and ML methods.
The same procedure as outlined in Section 4.1
was used. The simulation results can be found

in Table 7. The QEF estimates give lower esti-
mated bias than LEF and ML estimates. We
also observe that estimated SEs and RMSEs
based on QEF estimates are lower than that
LEF and ML estimates. The estimated SEs
based on the simulation are agreed in agree-
ment with the empirical results for all three
methods as shown in Table 6. The mean and
variance of Pearson residuals are close to zero
and unity which are 0.039 and 0.992, respec-
tively, indicating the adequacy of the model.
The results of the LB test suggest that there is
no significant serial correlation in the residuals
(Table 8).

Table 6. Parameter estimates, AIC and BIC for ZIPINGARCH(1, 1) model. Values in paren-

thesis are standard errors of parameter estimates

Method o a1 B @ AIC  BIC
QEF  0.277(0.007) 0.089 (0.015) 0.217 (0.049) 0.214(0.017) 394.16 405.36
LEF  0.281(0.012) 0.084 (0.023) 0.233 (0.067) 0.208(0.019) 397.23 408.37
ML  0.279(0.007) 0.087 (0.014) 0.213 (0.051) 0.214(0.017) 396.15 406.63
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Table 7. Simulation results based on bootstrap method for ZIPINGARCH(1,1) model

Method | Estimated parameter | Mean | Bias SE | RMSE
Qp 0.289 | 0.012 | 0.007 | 0.014

QEF a 0.094 | 0.005 | 0.015 | 0.016
5 0.226 | 0.008 | 0.047 | 0.048

w 0.210 | 0.004 | 0.017 | 0.018

Qp 0.296 | 0.014 | 0.012 | 0.019

LEF a 0.109 | 0.025 | 0.024 | 0.034
5 0.245 | 0.012 | 0.067 | 0.068

w 0.198 | 0.010 | 0.018 | 0.021

Qp 0.290 | 0.011 | 0.008 | 0.013

ML Qa 0.095 | 0.008 | 0.015 | 0.016
5 0.237 | 0.024 | 0.049 | 0.054

w 0.199 | 0.015 | 0.018 | 0.023

Table 8. Diagnostics for ZIPINGARCH(1,1) model

X2

p-value

LBgo(Et) LB30(€%)
254

24.22

0.705 0.762

This means that the ZIPINGARCH(1,1) model data. The cumulative periodogram plots fur-
via QEF estimates fit appropriately with the ther support the model’s accuracy (Figure 4).

5. Conclusions
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Fig. 4. Cummulative periodogram plot

This paper considers the QEF method for es-

timating the parameters of ZIP models.

We

have shown the superiority of the QEF method
compared to the LEF method, theoretically.

Results also show that the information gain
using the QEF method are more informative
than that LEF method for the count data in
ZIP models. Through the empirical studies,
it is found that the ZIP models via QEF esti-
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mates provide a better fit than the LEF and ML
estimates. Hence, from the findings, the QEF
method could serve as an alternative parameter
estimation method in estimating the parame-
ters for this class of count data models.
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