The role of Candida albicans candidalysin ECE1 gene in oral carcinogenesis

By: Satiman, EAFEN [Satiman, Engku Anis Fariha Engku Nazrullah][1,2]; Ahmad, H (Ahmad, Hasna)[1,2]; Ramzi, AB [Ramzi, Ahmad Bazi][3]; Wahab, RA [Wahab, Ridhwan Abdul][1]; Kaderi, MA [Kaderi, Mohd Anif][1]; Harun, WHAW [Harun, Wan Himratul Aznita Wan][3]; Dashper, S [Dashper, Stuart][4]; McCullough, M [McCullough, Michael][4]; Arzmi, MH [Arzmi, Mohd Hafiz][5]

View Web of Science ResearcherID and ORCID

JOURNAL OF ORAL PATHOLOGY & MEDICINE
DOI: 10.1111/j.1600-0714.2020.013014

Abstract
Oral squamous cell carcinoma is associated with many known risk factors including tobacco smoking, chronic alcoholism, poor oral hygiene, unhealthy dietary habits and microbial infection. Previous studies have highlighted Candida albicans host tissue infection as a risk factor in the initiation and progression of oral cancer. C albicans invasion induces several cancerous hallmarks, such as activation of proto-oncogenes, induction of DNA damage and overexpression of inflammatory signalling pathways. However, the molecular mechanisms behind these responses remain unclear. A recently discovered fungal toxin peptide, candidalysin, has been reported as an essential molecule in epithelial damage and host recognition of C albicans infection. Candidalysin has a clear role in inflammasome activation and induction of cell damage. Several inflammatory molecules such as IL-6, IL-17, NLRP3 and GM-CSF have been linked to carcinogenesis. Candidalysin is encoded by the ECE1 gene, which has been linked to virulence factors of C albicans such as adhesion, biofilm formation and filamentation properties. This review discusses the recent epidemiological burden of oral cancer and highlights the significance of the ECE1 gene and the ECE1 protein breakdown product, candidalysin in oral malignancy. The immunological and molecular mechanisms behind oral malignancy induced by inflammation and the role of the toxic fungal peptide candidalysin in oral carcinogenesis is explored. With increasing evidence associating C albicans with oral carcinoma, identifying the possible fungal pathogenicity factors including the role of candidalysin can assist in efforts to understand the link between C albicans infection and carcinogenesis, and pave the way for research into therapeutic potentials.

Keywords:
Author Keywords: Candida albicans; candidalysin; ECE1 protein; immunomodulation

Author Information
Reprint Address: Arzmi, MH (corresponding author)

Addresses:
[1] Int Islamic Univ Malaysia, Kulliyyah Dent, Kuantan Campus, Kuantan 25200, Pahang, Malaysia.
[4] Univ Melbourne, Melbourne Dent Sch, Melbourne, Vic, Australia

Email Addresses: hafizarzmi@iium.edu.my

Funding
Funding Agency	Show details	Grant Number
Ministry of Education, Malaysia | FRGS/1/2018/SKK11/UM/03/1 |
View funding text
1. Leuloplakia - Review of A Potentially Malignant Disorder
 By: Abdulllah, Mohammed; Kon, G.; Gaddikeri, Kavitha; et al.
 JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH Volume: 8 Issue: 8 Pages: ZE1-ZE4 Published: AUG 2014
 Times Cited: 9

2. Oral Candida colonization in oral cancer patients and its relationship with traditional risk factors of oral cancer: A matched case-control study
 ORAL ONCOLOGY Volume: 51 Issue: 2 Pages: 139-145 Published: FEB 2015
 Times Cited: 35

3. Recent advances in understanding Candida albicans hyphal growth
 By: Arnowitz, RA; Bassilana, M.
 F1000 Research Volume: 9 Pages: 700 Published: 2019
 Times Cited: 1

4. Monospecies and polymicrobial biofilms differentially regulate the phenotype of genotype-specific oral cancer cells
 By: Azarni, Mohd Haliz; Cirillo, Nicola; Lenzo, Jason C.; et al.
 CARCINOGENESIS Volume: 40 Issue: 1 Pages: 184-193 Published: JAN 2019
 Times Cited: 2

5. Candidal Species Identification in Malignant and Potentially Malignant Oral Lesions with Antifungal Resistance Patterns
 By: Bansal, Rahul; Paillaqat, Shambulingappa; Sheikh, Soheyli; et al.
 CONTEMPORARY CLINICAL DENTISTRY Volume: 9 Supplement: 2 Pages: S309-S313 Published: SEP 2018
 Times Cited: 2

6. Analysis of oral yeast microflora in patients with oral squamous cell carcinoma
 By: Berkovits, Csaba; Toth, Adel; Szelenyi, Judit; et al.
 SPRINGERPLUS Volume: 5 Article Number: 1257 Published: AUG 4 2016
 Times Cited: 4

 By: Bray, Freddie; Ferlay, Jacques; Soerjomataram, Isabelle; et al.
 CA A CANCER JOURNAL FOR CLINICIANS Volume: 68 Issue: 6 Pages: 396-424 Published: NOV-DEC 2018
 Times Cited: 10,289

8. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma
 By: Chang, Chunrong; Geng, Fengxue; Shi, Xiaoding; et al.
 APPLIED MICROBIOLOGY AND BIOTECHNOLOGY Volume: 103 Issue: 3 Pages: 1393-1404 Published: FEB 2019
 Times Cited: 10

9. Network analysis of hyphae forming proteins in Candida albicans identifies important proteins responsible for pathovirulence in the organism
 By: Das, Sanjit; Bhuyan, Rajabrata; Bagchi, Angshuman; et al.
 HELIYON Volume: 5 Issue: 6 Article Number: e01916 Published: JUN 2019
 Times Cited: 2

10. Oral and pharyngeal cancer in Europe: incidence, mortality and trends as presented to the Global Oral Cancer Forum
 By: Dz, P.; Melelù, M.; Diniz-Freitas, M.
 Transl Res Oral Oncol Volume: 2 Other: 2037174X17701517 Published: 2017
 Times Cited: 1

11. CARD9(+)-microglia promote antifungal immunity via IL-1 beta- and CXCL1-mediated neutrophil recruitment
 By: Drummond, Rebecca A.; Swamydas, Muthulakha; Oikonomou, Vasilios; et al.
 NATURE IMMUNOLOGY Volume: 20 Issue: 5 Pages: 559+ Published: MAY 2019
 Times Cited: 19