
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 170 (2020) 249–256

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2020.03.037

10.1016/j.procs.2020.03.037 1877-0509

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2020) 000–000

www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 6-9, 2020, Warsaw, Poland

A Model for Computing Skyline Data Items in Cloud Incomplete
Databases

Yonis Gulzara,*, Ali A. Alwanb, Abedallah Zaid Abualkishikc, Abid Mehmooda
aDepartment of Management Information Systems, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

bKulliyyah of Information and Communication Technology, International Islamic University Malaysia,53100, Kuala Lumpur, Malaysia
cAmerican University in the Emirates, Dubai, United Arab Emirates

Abstract

Skyline queries intend to retrieve the most superior data items in the database that best fit with the user’s given preference.
However, processing skyline queries are expensive and uneasy when applying on large distributed databases such as cloud
databases. Moreover, it would be further sophisticated to process skyline queries if these distributed databases have missing
values in certain dimensions. The effect of data incompleteness on skyline process is extremely severe because missing values
result in un-hold the transitivity property of skyline technique and leads to the problem of cyclic dominance. This paper proposes
an efficient model for computing skyline data items in cloud incomplete databases. The model focuses on processing skyline
queries in cloud incomplete databases aiming at reducing the domination tests between data items, the processing time, and the
amount of data transfer among the involved datacenters. Various set of experiments are conducted over two different types of
datasets and the result demonstrates that the proposed solution outperforms the previous approaches in terms of domination tests,
processing time, and amount of data transferred.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Skyline queries; incomplete data; query processing; cloud databases; distributed database

* Corresponding author. Tel.: +966-135896205.
E-mail address: ygulzar@kfu.edu.sa

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2020) 000–000

www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 6-9, 2020, Warsaw, Poland

A Model for Computing Skyline Data Items in Cloud Incomplete
Databases

Yonis Gulzara,*, Ali A. Alwanb, Abedallah Zaid Abualkishikc, Abid Mehmooda
aDepartment of Management Information Systems, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

bKulliyyah of Information and Communication Technology, International Islamic University Malaysia,53100, Kuala Lumpur, Malaysia
cAmerican University in the Emirates, Dubai, United Arab Emirates

Abstract

Skyline queries intend to retrieve the most superior data items in the database that best fit with the user’s given preference.
However, processing skyline queries are expensive and uneasy when applying on large distributed databases such as cloud
databases. Moreover, it would be further sophisticated to process skyline queries if these distributed databases have missing
values in certain dimensions. The effect of data incompleteness on skyline process is extremely severe because missing values
result in un-hold the transitivity property of skyline technique and leads to the problem of cyclic dominance. This paper proposes
an efficient model for computing skyline data items in cloud incomplete databases. The model focuses on processing skyline
queries in cloud incomplete databases aiming at reducing the domination tests between data items, the processing time, and the
amount of data transfer among the involved datacenters. Various set of experiments are conducted over two different types of
datasets and the result demonstrates that the proposed solution outperforms the previous approaches in terms of domination tests,
processing time, and amount of data transferred.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Skyline queries; incomplete data; query processing; cloud databases; distributed database

* Corresponding author. Tel.: +966-135896205.
E-mail address: ygulzar@kfu.edu.sa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.03.037&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

250	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–2562 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

1. Introduction

Skyline query operator returns only non-dominated data items from the database, which are not worse than any of
the data items in the database [1-5]. For example, a tourist is seeking for a hotel that is closest to a beach and at the
same time is cheapest in price, among the set of available hotels in the hotel database, skyline technique would only
retrieve the hotels that best meet the preferences of the tourist.

Skyline queries have been implemented in both complete [1, 6] and incomplete databases [2-5, 7-8, 17].
Computing skylines in complete database is not challenging in comparison to incomplete databases. This is due to
the fact that in complete databases the values of each dimension in the database are always present. Thus, the issue
of losing transitivity property of skyline technique and the problem of cyclic dominance are not exist. However,
computing skylines in incomplete database would be further complicated. This is because in incomplete database
data items might have dimensions with missing values. The missing values in the dimensions of the data items add
more challenges when processing skyline queries. This is because the data incompleteness turn the process of
skyline computation to be sophisticated and increase the amount of domination tests between the data items. Values
missing in the dimensions of the database, not only increase the number of pairwise comparisons between data
items, but it also might compromise losing the transitivity property of skyline technique.

Transitivity property can be defined as: for instance, there are 3 data items (d1, d2, d3) and these data items
contain 3 dimensions (a1, a2, a3). It is assumed that there are some dimensions missing (-) in each data item d1 (4, -,
5), d2 (-, 6, 3), d1 (7, 4, -). While comparing these data items to identify skylines it can be noticed that data item d1 is
dominating d2 in dimension a3 (max values is considered better), whereas other two dimensions are incomparable
due to missing values. Comparing d2 with d3 we noticed that d2 is dominated d3 at dimension a2. Finally, when we
compared d1 with d3, and noticed that d1 did not dominate d3 in any dimension. Such kind of scenarios void
transitivity property. In addition to that, we found out that d3 dominated d1 at dimension a1. Therefore, these data
items are dominated by one another (d1 dominates d2, d2 dominates d3, d3 dominates d1), which led to cyclic
dominance. So, in conclusion none of these data items are considered as skylines.

The implementation of skylines queries have been incorporated in may databases including but not limited to
distributed databases [9] and cloud databases [10]. In cloud databases data is spread over various different data
centers at different remote locations. In order to derive the skyline data items in cloud incomplete databases, data
items needs to be transferred from one data center to other in order to compute the skyline data items of the entire
database. It is impractical to transfer all data items from one datacenter to another without prior pruning [9-10].
Because transferring data items from one location into another without filtration is an expensive and time consuming
process. It is desirable in cloud incomplete databases to apply a data pruning technique that leads to eliminate the
unnecessary data items from the skyline process which in turn result into avoid many unwanted pairwise
comparisons between data items. This paper presents a model for computing skyline data items in cloud incomplete
database. The proposed model incorporates an efficient approach to avoid involving the unwanted data items from
further processing. Doing so leads to a great benefits by simplifying the domination tests process between data items
and also reducing the total processing time of skyline operation. This paper concentrates on deriving skyline data
items in a cloud incomplete database with horizontal partitioning of data spread over different datacenters.

 The reminder of this paper is orderly as follows. Section 2 discusses the previous works relevant to skyline
queries in both complete and incomplete databases. Section 3 describes the basic necessary definitions and notations
related to skyline queries. The detail steps of the proposed approach are explained in section 4. The experiment
results that demonstrate the effectiveness and the efficiency of the proposed approach are presented and explained in
section 5. Lastly, section 6 outlines the conclusion of the paper.

2. Related Work

Numerous approaches have been proposed since the first introduction of skyline queries in database systems. The
literature of the database reported that the work in [1] is the first that highlights the issue of skyline queries in
database systems. The proposed skyline operator introduced in [1] has been designed based on the concept of Block-
Nested-Loop (BNL) and Divide-and-Conquer (D&C) [1]. BNL compares one data item with the rest and this
process is continued until whole dataset is scanned. Whereas, in D&C dataset is divided into 2 distinct subsets and

 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000 3

after identifying the skyline data items from each subset, the skyline data items of these subsets are further evaluated
with each other to identify the skyline data items of the entire dataset. After the introduction of BNL and D&C many
other algorithms were proposed aiming at improving the computation of skyline queries over a database with
complete data. Among the remarkable skyline techniques are SFS [11], LESS [12], SaLSa [6], BSkyTree [13] and
many others. These approaches focus on designing skyline technique that avoid scanning the entire database when
deriving the skyline data items. The work in [3] is the first that discussed that problem of skyline queries
computation in a database with incomplete data. They have proposed an approach called ISkyline that attempt to
handle the issue of data incompleteness in the database when deriving skyline data items. Many other skyline
approaches have been proposed to process skyline queries in incomplete data. These approaches are either sorting-
based technique or partitioning-based technique. For instance, SIDS [4], framework [2], SOBA [14], SPQ [15],
SCSA [5] are incorporate either sorting or partitioning technique to compute the skyline data items in incomplete
data.

To our best knowledge, the most recent work skyline queries in cloud incomplete data presented in [10]. The
work in [10] presents and approach named ICS that incorporate a sorting technique to determine the skyline data
items in cloud incomplete databases. ICS starts by sorting each dimension values in descending order (higher value
is better) and n number of arrays are constructed to store id of each sorted data items (n= number of dimensions in
dataset). Then a scanning process is carried out to filter out these data items that do not have potential to be part of
final skylines. After that local skylines are identified by comparing the data item with one another. At the end, local
skylines of each datacenter are transferred only to the query submitted datacenter where whole process is getting
repeated to identify final skylines of entire data. However, in ICS algorithm losing of transitivity property is not
properly well addressed. No measures have been taken in order to hold transitivity property. Moreover, no
additional optimization technique has been used to reduce amount of data items before applying skyline process.

3. Definitions

This section gives the basic necessary definitions and annotations relevant to skyline queries in the context of
incomplete database to facilitate understanding the detail steps of the proposed approach of processing skyline queries
in cloud incomplete database.
Definition 1, Incomplete Database: Given a database D (R1, R2, ..., Rn), where Ri is a relation denoted by Ri (d1, d2, ...,
dm), D is said to be incomplete if (and only if) it contains at least a data item pj with missing values in one or more
dimensions dk (attributes); otherwise, it is complete.
Definition 2, Dominance on Incomplete Database: Given two data items pi and pj D incomplete database with d
dimensions, pi dominates pj (denoted by pi ≻ pj) if (and only if) the following three conditions hold:
1. The values of dk and dl d for pi and pj must be non-missing and
2. ∀ dk d, pi.dk pj.dk and
3. dl, d, pi.dl pj.dl

Definition 3, Skyline Queries on Incomplete Database: Select a data item pi from the set of D incomplete database if
(and only if) pi is as good as pj (where i ≠ j) in all common non-missing dimensions and strictly better than pj in at least
one common non-missing dimension. We use IncoDskyline to denote the set of skyline data items on an incomplete
database, IncoDskyline = (pi pi, pj D, pi pj).

4. The Proposed Model for Computing Skyline Data Items in Cloud Incomplete Databases

This section elaborates the detail steps of the proposed model for computing skyline data items in cloud
incomplete databases. The proposed model is made of three modules, namely: (i) Identify local skyline data items of
each datacenter, (ii). Join local skyline data items, and (iii). Evaluate final skyline data items.

4.1. Identifying Local Skyline Data Items of Each Datacenter

This module identifies the local skyline data items of all involved datacenters to help in removing the dominated

	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–256� 2512 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

1. Introduction

Skyline query operator returns only non-dominated data items from the database, which are not worse than any of
the data items in the database [1-5]. For example, a tourist is seeking for a hotel that is closest to a beach and at the
same time is cheapest in price, among the set of available hotels in the hotel database, skyline technique would only
retrieve the hotels that best meet the preferences of the tourist.

Skyline queries have been implemented in both complete [1, 6] and incomplete databases [2-5, 7-8, 17].
Computing skylines in complete database is not challenging in comparison to incomplete databases. This is due to
the fact that in complete databases the values of each dimension in the database are always present. Thus, the issue
of losing transitivity property of skyline technique and the problem of cyclic dominance are not exist. However,
computing skylines in incomplete database would be further complicated. This is because in incomplete database
data items might have dimensions with missing values. The missing values in the dimensions of the data items add
more challenges when processing skyline queries. This is because the data incompleteness turn the process of
skyline computation to be sophisticated and increase the amount of domination tests between the data items. Values
missing in the dimensions of the database, not only increase the number of pairwise comparisons between data
items, but it also might compromise losing the transitivity property of skyline technique.

Transitivity property can be defined as: for instance, there are 3 data items (d1, d2, d3) and these data items
contain 3 dimensions (a1, a2, a3). It is assumed that there are some dimensions missing (-) in each data item d1 (4, -,
5), d2 (-, 6, 3), d1 (7, 4, -). While comparing these data items to identify skylines it can be noticed that data item d1 is
dominating d2 in dimension a3 (max values is considered better), whereas other two dimensions are incomparable
due to missing values. Comparing d2 with d3 we noticed that d2 is dominated d3 at dimension a2. Finally, when we
compared d1 with d3, and noticed that d1 did not dominate d3 in any dimension. Such kind of scenarios void
transitivity property. In addition to that, we found out that d3 dominated d1 at dimension a1. Therefore, these data
items are dominated by one another (d1 dominates d2, d2 dominates d3, d3 dominates d1), which led to cyclic
dominance. So, in conclusion none of these data items are considered as skylines.

The implementation of skylines queries have been incorporated in may databases including but not limited to
distributed databases [9] and cloud databases [10]. In cloud databases data is spread over various different data
centers at different remote locations. In order to derive the skyline data items in cloud incomplete databases, data
items needs to be transferred from one data center to other in order to compute the skyline data items of the entire
database. It is impractical to transfer all data items from one datacenter to another without prior pruning [9-10].
Because transferring data items from one location into another without filtration is an expensive and time consuming
process. It is desirable in cloud incomplete databases to apply a data pruning technique that leads to eliminate the
unnecessary data items from the skyline process which in turn result into avoid many unwanted pairwise
comparisons between data items. This paper presents a model for computing skyline data items in cloud incomplete
database. The proposed model incorporates an efficient approach to avoid involving the unwanted data items from
further processing. Doing so leads to a great benefits by simplifying the domination tests process between data items
and also reducing the total processing time of skyline operation. This paper concentrates on deriving skyline data
items in a cloud incomplete database with horizontal partitioning of data spread over different datacenters.

 The reminder of this paper is orderly as follows. Section 2 discusses the previous works relevant to skyline
queries in both complete and incomplete databases. Section 3 describes the basic necessary definitions and notations
related to skyline queries. The detail steps of the proposed approach are explained in section 4. The experiment
results that demonstrate the effectiveness and the efficiency of the proposed approach are presented and explained in
section 5. Lastly, section 6 outlines the conclusion of the paper.

2. Related Work

Numerous approaches have been proposed since the first introduction of skyline queries in database systems. The
literature of the database reported that the work in [1] is the first that highlights the issue of skyline queries in
database systems. The proposed skyline operator introduced in [1] has been designed based on the concept of Block-
Nested-Loop (BNL) and Divide-and-Conquer (D&C) [1]. BNL compares one data item with the rest and this
process is continued until whole dataset is scanned. Whereas, in D&C dataset is divided into 2 distinct subsets and

 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000 3

after identifying the skyline data items from each subset, the skyline data items of these subsets are further evaluated
with each other to identify the skyline data items of the entire dataset. After the introduction of BNL and D&C many
other algorithms were proposed aiming at improving the computation of skyline queries over a database with
complete data. Among the remarkable skyline techniques are SFS [11], LESS [12], SaLSa [6], BSkyTree [13] and
many others. These approaches focus on designing skyline technique that avoid scanning the entire database when
deriving the skyline data items. The work in [3] is the first that discussed that problem of skyline queries
computation in a database with incomplete data. They have proposed an approach called ISkyline that attempt to
handle the issue of data incompleteness in the database when deriving skyline data items. Many other skyline
approaches have been proposed to process skyline queries in incomplete data. These approaches are either sorting-
based technique or partitioning-based technique. For instance, SIDS [4], framework [2], SOBA [14], SPQ [15],
SCSA [5] are incorporate either sorting or partitioning technique to compute the skyline data items in incomplete
data.

To our best knowledge, the most recent work skyline queries in cloud incomplete data presented in [10]. The
work in [10] presents and approach named ICS that incorporate a sorting technique to determine the skyline data
items in cloud incomplete databases. ICS starts by sorting each dimension values in descending order (higher value
is better) and n number of arrays are constructed to store id of each sorted data items (n= number of dimensions in
dataset). Then a scanning process is carried out to filter out these data items that do not have potential to be part of
final skylines. After that local skylines are identified by comparing the data item with one another. At the end, local
skylines of each datacenter are transferred only to the query submitted datacenter where whole process is getting
repeated to identify final skylines of entire data. However, in ICS algorithm losing of transitivity property is not
properly well addressed. No measures have been taken in order to hold transitivity property. Moreover, no
additional optimization technique has been used to reduce amount of data items before applying skyline process.

3. Definitions

This section gives the basic necessary definitions and annotations relevant to skyline queries in the context of
incomplete database to facilitate understanding the detail steps of the proposed approach of processing skyline queries
in cloud incomplete database.
Definition 1, Incomplete Database: Given a database D (R1, R2, ..., Rn), where Ri is a relation denoted by Ri (d1, d2, ...,
dm), D is said to be incomplete if (and only if) it contains at least a data item pj with missing values in one or more
dimensions dk (attributes); otherwise, it is complete.
Definition 2, Dominance on Incomplete Database: Given two data items pi and pj D incomplete database with d
dimensions, pi dominates pj (denoted by pi ≻ pj) if (and only if) the following three conditions hold:
1. The values of dk and dl d for pi and pj must be non-missing and
2. ∀ dk d, pi.dk pj.dk and
3. dl, d, pi.dl pj.dl

Definition 3, Skyline Queries on Incomplete Database: Select a data item pi from the set of D incomplete database if
(and only if) pi is as good as pj (where i ≠ j) in all common non-missing dimensions and strictly better than pj in at least
one common non-missing dimension. We use IncoDskyline to denote the set of skyline data items on an incomplete
database, IncoDskyline = (pi pi, pj D, pi pj).

4. The Proposed Model for Computing Skyline Data Items in Cloud Incomplete Databases

This section elaborates the detail steps of the proposed model for computing skyline data items in cloud
incomplete databases. The proposed model is made of three modules, namely: (i) Identify local skyline data items of
each datacenter, (ii). Join local skyline data items, and (iii). Evaluate final skyline data items.

4.1. Identifying Local Skyline Data Items of Each Datacenter

This module identifies the local skyline data items of all involved datacenters to help in removing the dominated

252	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–256
4 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

data items from the join operation. In order to achieve this goal this module is further divided into five submodules,
which are sorting and filtering, clustering and grouping, identifying local skyline data items, selecting superior local
skyline data items, and retrieving skyline data items.

4.1.1. Sorting and Filtering

In this submodule the data items are sorted in non-ascending order for each dimension and a set of array list is
created to save the indices (ID’s) of the sorted data items. Then, a scanning process is carried out to read all the data
items ID’s present in array list in a round robin fashion. The number of occurrences of each data item ID is calculated
and stored in 2D array list. Scanning processes is stopped only when all data items present in the relation of the
datacenter are read at least once. Furthermore, an optimization technique called filtering is implemented in order to
filter out non-dominant data items before applying skyline technique. A user defined threshold value is defined and
the occurrence value (count) of each data items from 2D array is compared with the threshold. If the count is less than
the threshold, then those data items are eliminated from further processing.

4.1.2. Clustering and Grouping

The aim of this submodule is to ensure that the transitivity property of skyline technique is hold and the problem of
cyclic dominance is avoided. This is achieved by dividing the remaining data items present in 2D into distinct clusters
based on the ‘count’ value of each data item. All these data items with the same count value will be placed in one
cluster. Then each cluster is further subdivided into distinct groups based on the bitmap representation of the data
items. Dividing of data items into clusters and groups guarantee that transitivity property of skyline is hold.

4.1.3. Identifying Local Skyline Data Items

This submodule identifies skylines of each cluster of the relation. This is performed by comparing the data items
present in each group against each other. Dominated data items will be removed from further processing while the
remaining data items present in each group will be further compared with the data items of other groups (cross
comparison is performed) present in the same cluster. At the end of the process dominated data items will be removed
and remaining data items present in cluster will be reported as local skyline data items of the cluster. It is important to
notice that the process of identifying local skyline data items of clusters will be executed simultaneously for each
cluster. The idea behind this is to reduce the processing time to identify the local skyline data items.

4.1.4. Selecting Superior Skyline Data Items

This submodule incorporate an optimization technique that helps in further pruning the local skyline data items
from further processing. This is performed by selecting only those data items in each cluster that have highest value(s)
in any dimension than other data items. Doing so, helps to further eliminate non-dominant data items that in turn
reduce the number of data items considered for next processes.

4.1.5. Retrieving Skyline Data Items

In this phase, the final skyline data items of each relation is identified. It attempts to return the skyline data items
of all involved datacenters. This is achieved by comparing local superior skyline data items of each cluster against
each other. At the end of the process all dominated data items in all clusters of a relation are eliminated and only the
remaining data items are considered as skyline of the relation. The process of identifying local skylines of each
datacenter is run parallelly for each datacenter in order to reduce the processing time. At the end of, the local skyline
data items of all relations (R1, R2, R3) stored at different datacenters (DC1, DC2, DC3) involved are identified.

4.2. Joining Local Skyline Data Items

This is the second module of our proposed model for computing skyline data items in cloud incomplete databases.
The aim of this module is to reduce the amount of data transfer from one datacenter to another. To do so, the local
skyline data items of all involved relations (R1, R2, R3) present at different datacenters are joined. The skyline data
items from all relations are combined in one relation R. The data items of relation R are called candidate skyline data
items. These candidate skyline data items will be further processed to identified the final skyline data items.

 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000 5

4.3. Evaluating Final Skyline Data Items

This model helps in identifying final skyline data items after the join operation has been performed on the joined
local skyline data items. This is achieved by repeating the steps present in the first module of our proposed model.
The process will start by sorting the candidate skyline data items in non-increasing order for each dimension of
relation R as mentioned in module 1 above. Array lists are constructed for each dimension to store ID’s of sorted data
items. Then the scanning process begins by reading each sorted data item ID’s in round robin fashion and the
presence of each data item will be counted and stored in 2D array. Filtering process will be applied again as
mentioned in module 1 to eliminate the data items that do not have a potential to be part of the final skyline data items
for entire database. After filtration process, clustering and grouping takes place to ensure that the cyclic dominance
would not be occurred and the transitivity property of skyline remain hold. Next, local skyline data items are being
identified from each cluster and dominated data items are being eliminated from further processing. Optimization
technique of selecting superior skyline data items is applied again to prune the remaining data items. At the end, the
remaining data items in each cluster are compared against the data items of other clusters to eliminate the dominated
data items and the remaining data items will be considered as final skyline data items of the entire database.

5. Experimental Environment

The proposed model has been compared with the most recent works such as SCSA [5], ICS [10], IncoSkyline
[16], and SIDS [4]. Since skyline computation is CPU intensive [1-5, 7-8, 10, 16-17] and high number of
domination tests between data item is required. Therefore, this work focuses on measuring the efficiency of the
proposed model with respect to domination tests between data items, processing time and amount of data transfer
between datacenters. These are considered the most influenced parameters in skyline query processing. The number
of pairwise comparisons and processing time are been calculated with respect to number of dimensions as well as
dataset size of cloud incomplete database. Two types of datasets (synthetic and real) have been used to evaluate the
proposed model. For synthetic dataset a corelated and independent datasets have been used while one real dataset
(NBA) has been used [1-5, 7-8, 16-17]. For simplicity and without losing generality, we assumed that the query
statement attempts to retrieve the skyline data items with the highest values. Table 1 summarizes the parameter
settings for synthetic and real datasets used in the experiments.

5.1. Experimental Results

This section highlights the experimental results performed on the synthetic and real datasets for our proposed
model of processing skyline queries in cloud incomplete databases. In this section, we attempt to investigate the
impact of database dimensionality (number of dimensions) and the influence of database cardinality (dataset size) on
the process of pairwise comparison and the processing time for skyline evaluation and amount of data transfer from
one datacenter to another. We argue that these are the most crucial parameters that influence the skyline query
processing[1-5,7-10, 16].

Table 1. The parameter settings of synthetic and real datasets

Parameter Settings Dataset Name
Correlated Independent NBA

No. of Dimensions 5, 7, 9, 11, 13 5, 7, 9, 11, 13 6, 8, 10, 12, 14, 16, 18
No. of Dimensions with missing

value 4, 6, 8, 10, 12 4, 6, 8, 10, 12 5, 7, 9, 11, 13, 15, 17
Dataset Size (KB) 100, 200, 300, 400, 500, 600 100, 200, 300, 400, 500, 600 40, 80, 120, 160, 200

Datacenters 3 3 3

5.1.1. Effect of Number of Dimensions

This set of experiments assess the impact of number of dimensions on the process of domination tests to identify
skyline in cloud incomplete data. In the first part of this experimental results we calculate pairwise comparisons
taken between data items in order to identify final skylines. In the second part of this experimental results we

	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–256� 253
4 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

data items from the join operation. In order to achieve this goal this module is further divided into five submodules,
which are sorting and filtering, clustering and grouping, identifying local skyline data items, selecting superior local
skyline data items, and retrieving skyline data items.

4.1.1. Sorting and Filtering

In this submodule the data items are sorted in non-ascending order for each dimension and a set of array list is
created to save the indices (ID’s) of the sorted data items. Then, a scanning process is carried out to read all the data
items ID’s present in array list in a round robin fashion. The number of occurrences of each data item ID is calculated
and stored in 2D array list. Scanning processes is stopped only when all data items present in the relation of the
datacenter are read at least once. Furthermore, an optimization technique called filtering is implemented in order to
filter out non-dominant data items before applying skyline technique. A user defined threshold value is defined and
the occurrence value (count) of each data items from 2D array is compared with the threshold. If the count is less than
the threshold, then those data items are eliminated from further processing.

4.1.2. Clustering and Grouping

The aim of this submodule is to ensure that the transitivity property of skyline technique is hold and the problem of
cyclic dominance is avoided. This is achieved by dividing the remaining data items present in 2D into distinct clusters
based on the ‘count’ value of each data item. All these data items with the same count value will be placed in one
cluster. Then each cluster is further subdivided into distinct groups based on the bitmap representation of the data
items. Dividing of data items into clusters and groups guarantee that transitivity property of skyline is hold.

4.1.3. Identifying Local Skyline Data Items

This submodule identifies skylines of each cluster of the relation. This is performed by comparing the data items
present in each group against each other. Dominated data items will be removed from further processing while the
remaining data items present in each group will be further compared with the data items of other groups (cross
comparison is performed) present in the same cluster. At the end of the process dominated data items will be removed
and remaining data items present in cluster will be reported as local skyline data items of the cluster. It is important to
notice that the process of identifying local skyline data items of clusters will be executed simultaneously for each
cluster. The idea behind this is to reduce the processing time to identify the local skyline data items.

4.1.4. Selecting Superior Skyline Data Items

This submodule incorporate an optimization technique that helps in further pruning the local skyline data items
from further processing. This is performed by selecting only those data items in each cluster that have highest value(s)
in any dimension than other data items. Doing so, helps to further eliminate non-dominant data items that in turn
reduce the number of data items considered for next processes.

4.1.5. Retrieving Skyline Data Items

In this phase, the final skyline data items of each relation is identified. It attempts to return the skyline data items
of all involved datacenters. This is achieved by comparing local superior skyline data items of each cluster against
each other. At the end of the process all dominated data items in all clusters of a relation are eliminated and only the
remaining data items are considered as skyline of the relation. The process of identifying local skylines of each
datacenter is run parallelly for each datacenter in order to reduce the processing time. At the end of, the local skyline
data items of all relations (R1, R2, R3) stored at different datacenters (DC1, DC2, DC3) involved are identified.

4.2. Joining Local Skyline Data Items

This is the second module of our proposed model for computing skyline data items in cloud incomplete databases.
The aim of this module is to reduce the amount of data transfer from one datacenter to another. To do so, the local
skyline data items of all involved relations (R1, R2, R3) present at different datacenters are joined. The skyline data
items from all relations are combined in one relation R. The data items of relation R are called candidate skyline data
items. These candidate skyline data items will be further processed to identified the final skyline data items.

 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000 5

4.3. Evaluating Final Skyline Data Items

This model helps in identifying final skyline data items after the join operation has been performed on the joined
local skyline data items. This is achieved by repeating the steps present in the first module of our proposed model.
The process will start by sorting the candidate skyline data items in non-increasing order for each dimension of
relation R as mentioned in module 1 above. Array lists are constructed for each dimension to store ID’s of sorted data
items. Then the scanning process begins by reading each sorted data item ID’s in round robin fashion and the
presence of each data item will be counted and stored in 2D array. Filtering process will be applied again as
mentioned in module 1 to eliminate the data items that do not have a potential to be part of the final skyline data items
for entire database. After filtration process, clustering and grouping takes place to ensure that the cyclic dominance
would not be occurred and the transitivity property of skyline remain hold. Next, local skyline data items are being
identified from each cluster and dominated data items are being eliminated from further processing. Optimization
technique of selecting superior skyline data items is applied again to prune the remaining data items. At the end, the
remaining data items in each cluster are compared against the data items of other clusters to eliminate the dominated
data items and the remaining data items will be considered as final skyline data items of the entire database.

5. Experimental Environment

The proposed model has been compared with the most recent works such as SCSA [5], ICS [10], IncoSkyline
[16], and SIDS [4]. Since skyline computation is CPU intensive [1-5, 7-8, 10, 16-17] and high number of
domination tests between data item is required. Therefore, this work focuses on measuring the efficiency of the
proposed model with respect to domination tests between data items, processing time and amount of data transfer
between datacenters. These are considered the most influenced parameters in skyline query processing. The number
of pairwise comparisons and processing time are been calculated with respect to number of dimensions as well as
dataset size of cloud incomplete database. Two types of datasets (synthetic and real) have been used to evaluate the
proposed model. For synthetic dataset a corelated and independent datasets have been used while one real dataset
(NBA) has been used [1-5, 7-8, 16-17]. For simplicity and without losing generality, we assumed that the query
statement attempts to retrieve the skyline data items with the highest values. Table 1 summarizes the parameter
settings for synthetic and real datasets used in the experiments.

5.1. Experimental Results

This section highlights the experimental results performed on the synthetic and real datasets for our proposed
model of processing skyline queries in cloud incomplete databases. In this section, we attempt to investigate the
impact of database dimensionality (number of dimensions) and the influence of database cardinality (dataset size) on
the process of pairwise comparison and the processing time for skyline evaluation and amount of data transfer from
one datacenter to another. We argue that these are the most crucial parameters that influence the skyline query
processing[1-5,7-10, 16].

Table 1. The parameter settings of synthetic and real datasets

Parameter Settings Dataset Name
Correlated Independent NBA

No. of Dimensions 5, 7, 9, 11, 13 5, 7, 9, 11, 13 6, 8, 10, 12, 14, 16, 18
No. of Dimensions with missing

value 4, 6, 8, 10, 12 4, 6, 8, 10, 12 5, 7, 9, 11, 13, 15, 17
Dataset Size (KB) 100, 200, 300, 400, 500, 600 100, 200, 300, 400, 500, 600 40, 80, 120, 160, 200

Datacenters 3 3 3

5.1.1. Effect of Number of Dimensions

This set of experiments assess the impact of number of dimensions on the process of domination tests to identify
skyline in cloud incomplete data. In the first part of this experimental results we calculate pairwise comparisons
taken between data items in order to identify final skylines. In the second part of this experimental results we

254	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–2566 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

calculate the processing time taken by all approaches to identify final skylines in cloud incomplete database. In this
set of experiments, the size of dataset is fixed and number of dimensions are varying.

Fig. 1a and 1b illustrate the results of correlated and independent synthetic dataset respectively. In which number
of dimensions are varying from 4 to 12 and sized is fixed to 300KB. From the figure it can be noticed that our model
is persistently outperforming the SCSA, CIS, Incoskyline, and SIDS. Furthermore, Fig. 1c represents the results of
NBA real dataset in which dataset size of fixed to 120 KB and number of dimensions are varying from 5 to 17. It can
be clearly seen that our model better than SCSA, CIS, Incoskyline, and SIDS. It is due to using of two optimization
techniques which helps to eliminate dominated data items as early as possible.

a) Correlated b) Independent c) NBA

Fig. 1. The effect of number of dimensions on the number of pairwise comparisons.

Fig. 2a, 2b and 2c represents the result of correlated and independent and NBA datasets where processing time is
being calculated of our model and existing approaches. This set of experiment have same parameter setting as of
previous experiments for synthetic and real datasets. From the figures it is clearly seen that our model is taking less
processing time when it comes to identify skylines in cloud incomplete data. our model is outperforming SCSA, CIS,
Incoskyline, and SIDS approaches.

a) Correlated b) Independent c) NBA

Fig. 2. The effect of number of dimensions on processing time.

5.1.2. Effect of Dataset Size

Fig. 3a, 3b and 3c explain the results of number of domination tests that have been assessed while identifying
skylines in correlated, independent and NBA dataset respectively. in this set of experiment, the dataset dimensions
are fixed, and dataset size is varying. For correlated and independent dataset, the number of dimensions is fixed to 6
and dataset size is varying from 100KB to 600KB. For NBA dataset the number of dimensions is fixed to 7 and
dataset size is varying from 40KB to 200KB. From the figures, it can be noticed that our model is outperforming
SCSA, CIS, Incoskyline, and SIDS approaches. This is achieved by using sorting and filtering technique to filter out
those data items that do not have potential to be part of final skyline.

Fig. 4a, 4b, and 4c explains the results of processing time taken by all approaches to identify final skylines in
correlated, independent and NBA datasets respectively. For this set of experiments the parameter settings are same

 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000 7

as previous experiment. From the fig. 4 we conclude that our model is outperforming all other approaches proposed
for skyline query processing in incomplete data. this is achieved by using clustering and grouping technique, which
identifies local skylines of each datacenter parallelly and simultaneously. Doing so helps in reducing processing time
while assessing skylines in cloud incomplete data.

a) Correlated b) Independent c) NBA

Fig. 3. The effect of dataset size on the number of pairwise comparisons.

a) Correlated b) Independent c) NBA

Fig. 4. The effect of dataset size on processing time

5.1.3. Effect of Amount of Data Transfer

In this set of experiment, the amount of data transfer from one datacenter to another is evaluated. The amount of
data transfer indicated that the number of data items that need to be transferred from one datacenter to another. In
our proposed model only local skylines of each realtion involved which are present at different datacenters located at
remote locations are transferred. Fig. 5a, b and c represents the amount of data tranfered from one datacenter to
another of correlated, indepdent and NBA datasets respectively. In our propsoed model it has been assumed that
three datacenters have been used where data is distributed horizontally. From Fig. 5 it can be noticed that our
proposed model reduces the amount of data tranfered to 96% to 98%, whereas the existing approaches (SCSA,
Incoskyline, and SIDS) send whole dataset from one datacenter to another in order to identify the final skylines. Our
proposed model also outperforms ICS approach it is because of using optimization technique called selecting
superior local skylines which reduces the total amount of local skylines to be transferred from one datacenter to
another which in turn reduces the network cost.

6. Conclusion

This paper presents a model for computing skyline data items in cloud incomplete databases. We described the
detail components of the model and explained how it managed to identify the skyline data items over a cloud
databases with incomplete data. Two optimization techniques have been proposed aiming at reducing the

	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–256� 2556 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

calculate the processing time taken by all approaches to identify final skylines in cloud incomplete database. In this
set of experiments, the size of dataset is fixed and number of dimensions are varying.

Fig. 1a and 1b illustrate the results of correlated and independent synthetic dataset respectively. In which number
of dimensions are varying from 4 to 12 and sized is fixed to 300KB. From the figure it can be noticed that our model
is persistently outperforming the SCSA, CIS, Incoskyline, and SIDS. Furthermore, Fig. 1c represents the results of
NBA real dataset in which dataset size of fixed to 120 KB and number of dimensions are varying from 5 to 17. It can
be clearly seen that our model better than SCSA, CIS, Incoskyline, and SIDS. It is due to using of two optimization
techniques which helps to eliminate dominated data items as early as possible.

a) Correlated b) Independent c) NBA

Fig. 1. The effect of number of dimensions on the number of pairwise comparisons.

Fig. 2a, 2b and 2c represents the result of correlated and independent and NBA datasets where processing time is
being calculated of our model and existing approaches. This set of experiment have same parameter setting as of
previous experiments for synthetic and real datasets. From the figures it is clearly seen that our model is taking less
processing time when it comes to identify skylines in cloud incomplete data. our model is outperforming SCSA, CIS,
Incoskyline, and SIDS approaches.

a) Correlated b) Independent c) NBA

Fig. 2. The effect of number of dimensions on processing time.

5.1.2. Effect of Dataset Size

Fig. 3a, 3b and 3c explain the results of number of domination tests that have been assessed while identifying
skylines in correlated, independent and NBA dataset respectively. in this set of experiment, the dataset dimensions
are fixed, and dataset size is varying. For correlated and independent dataset, the number of dimensions is fixed to 6
and dataset size is varying from 100KB to 600KB. For NBA dataset the number of dimensions is fixed to 7 and
dataset size is varying from 40KB to 200KB. From the figures, it can be noticed that our model is outperforming
SCSA, CIS, Incoskyline, and SIDS approaches. This is achieved by using sorting and filtering technique to filter out
those data items that do not have potential to be part of final skyline.

Fig. 4a, 4b, and 4c explains the results of processing time taken by all approaches to identify final skylines in
correlated, independent and NBA datasets respectively. For this set of experiments the parameter settings are same

 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000 7

as previous experiment. From the fig. 4 we conclude that our model is outperforming all other approaches proposed
for skyline query processing in incomplete data. this is achieved by using clustering and grouping technique, which
identifies local skylines of each datacenter parallelly and simultaneously. Doing so helps in reducing processing time
while assessing skylines in cloud incomplete data.

a) Correlated b) Independent c) NBA

Fig. 3. The effect of dataset size on the number of pairwise comparisons.

a) Correlated b) Independent c) NBA

Fig. 4. The effect of dataset size on processing time

5.1.3. Effect of Amount of Data Transfer

In this set of experiment, the amount of data transfer from one datacenter to another is evaluated. The amount of
data transfer indicated that the number of data items that need to be transferred from one datacenter to another. In
our proposed model only local skylines of each realtion involved which are present at different datacenters located at
remote locations are transferred. Fig. 5a, b and c represents the amount of data tranfered from one datacenter to
another of correlated, indepdent and NBA datasets respectively. In our propsoed model it has been assumed that
three datacenters have been used where data is distributed horizontally. From Fig. 5 it can be noticed that our
proposed model reduces the amount of data tranfered to 96% to 98%, whereas the existing approaches (SCSA,
Incoskyline, and SIDS) send whole dataset from one datacenter to another in order to identify the final skylines. Our
proposed model also outperforms ICS approach it is because of using optimization technique called selecting
superior local skylines which reduces the total amount of local skylines to be transferred from one datacenter to
another which in turn reduces the network cost.

6. Conclusion

This paper presents a model for computing skyline data items in cloud incomplete databases. We described the
detail components of the model and explained how it managed to identify the skyline data items over a cloud
databases with incomplete data. Two optimization techniques have been proposed aiming at reducing the

256	 Yonis Gulzar et al. / Procedia Computer Science 170 (2020) 249–2568 Yonis Gulzar et al. / Procedia Computer Science 00 (2018) 000–000

domination tests and decrease the amount of data transfer from one datacenter to another during the skyline query
process. Several experiments have been conducted and the results show that our model has significantly
outperformed the previous existing approaches.

a) Correlated b) Independent c) NBA

Fig. 5. Amount of data transfer

References

[1] S. Borzsony, D. Kossmann, and K. Stocker, "The Skyline operator," in Proceedings 17th International Conference on Data Engineering,
Cancun, Mexico, 2001, pp. 421-430.

[2] Y. Gulzar, A. A. Alwan, N. Salleh, I. F. A. Shaikhli, and S. I. M. Alvi, "A Framework for Evaluating Skyline Queries over Incomplete
Data," Procedia Computer Science, vol. 94, pp. 191-198, 2016/01/01/ 2016.

[3] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, "Skyline Query Processing for Incomplete Data," in IEEE 24th International Conference
on Data Engineering, Cancun, (Mexico). PP. 556-565, 2008, pp. 556-565.

[4] R. Bharuka and P. S. Kumar, "Finding skylines for incomplete data," presented at the Proceedings of the 24th Australasian Database
Conference - Volume 137, Adelaide, Australia, 2013.

[5] Y. Gulzar, A. A. Alwan, R. M. Abdullah, Q. Xin, and M. B. Swidan, "SCSA: Evaluating skyline queries in incomplete data," Applied
Intelligence, vol. 49, pp. 1636-1657, May 01 2019.

[6] I. Bartolini, P. Ciaccia, and M. Patella, "SaLSa: computing the skyline without scanning the whole sky," presented at the Proceedings of the
15th ACM international conference on Information and knowledge management, Arlington, Virginia, USA, 2006.

[7] M. B. Swidan, A. A. Alwan, S. Turaev, and Y. Gulzar, "A Model for Processing Skyline Queries in Crowd-sourced Databases," Indonesian
Journal of Electrical Engineering and Computer Science, vol. 10, pp. 798-806, 2018.

[8] Y. Gulzar, A. A. Alwan, H. Ibrahim, and Q. Xin, "D-SKY: A Framework for Processing Skyline Queries in a Dynamic and Incomplete
Database," presented at the Proceedings of the 20th International Conference on Information Integration and Web-based Applications &
Services, Yogyakarta, Indonesia, 2018.

[9] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, "Processing skyline queries in incomplete distributed databases," Journal of Intelligent
Information Systems, vol. 48, pp. 399-420, April 01 2017.

[10] Y. Gulzar, Ali A. Alwan, N. Salleh, and I. F. Al Shaikhli, "Identifying Skylines In Cloud Databases With Incomplete Data," Journal of
ICT, vol. 18, pp. 19-34, 2019.

[11] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, "Skyline with presorting," in Proceedings 19th International Conference on Data
Engineering (ICDE03), Bangalore (India), 2003, pp. 717-719.

[12] P. Godfrey, R. Shipley, and J. Gryz, "Maximal vector computation in large data sets," presented at the Proceedings of the 31st international
conference on Very large data bases, Trondheim, Norway, 2005.

[13] J. Lee and S.-w. Hwang, "Scalable skyline computation using a balanced pivot selection technique," Information Systems, vol. 39, pp. 1-
21, 2014/01/01/ 2014.

[14] J. Lee, H. Im, and G.-w. You, "Optimizing Skyline Queries over Incomplete Data," Information Sciences, vol. 361, pp. 14-28, 2016.
[15] Y. Wang, Z. Shi, J. Wang, L. Sun, and B. Song, "Skyline Preference Query Based on Massive and Incomplete Dataset," IEEE Access, vol.

5, pp. 3183-3192, 2017.
[16] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, "An Efficient Approach for Processing Skyline Queries in Incomplete Multidimensional

Database," Arabian Journal for Science and Engineering, vol. 41, pp. 2927-2943, 2016.
[17] Y. Gulzar, Ali A. Alwan, and S. Turaev, "Optimizing Skyline Query Processing in Incomplete Data," IEEE Access, vol. 7, pp. 178121-

178138, 2019.

