A Novel Multi-Agent and Multilayered Game Formulation for Intrusion Detection in Internet of Things (IoT)

By: Khan, BU (Khan, Burhan Ul Islam)[1]; Anwar, F (Anwar, Farhat)[1]; Olanrewaju, RF (Olanrewaju, Rashidah Funke)[1]; Pampori, BR (Pampori, Bisma Rasool)[2]; Mir, RN (Mir, Roozie Naaz)[3]

IEEE ACCESS
Volume: 8 Pages: 98481-98490
DOI: 10.1109/ACCESS.2020.2997711
Published: 2020
Document Type: Article
View Journal Impact

Abstract
The current era of smart computing and enabling technologies encompasses the Internet of Things (IoT) as a network of connected intelligent objects where objects range from sensors to smartphones and wearables. Here, nodes or objects cooperate during communication scenarios to accomplish effective throughput performance. Despite the deployment of large-scale infrastructure-based communications with faster access technologies, IoT communication layers can still be affected with security vulnerabilities if nodes/objects do not cooperate and intend to take advantage of other nodes for fulfilling their malevolent interest. Therefore, it is essential to formulate an intrusion detection/prevention system that can effectively identify the malicious node and restrict it from further communication activities. Thus, the throughput, and energy performance can be maximized to a significant extent. This study introduces a combined multi-agent and multilayered game formulation where it incorporates a trust model to assess each node/object, which is participating in IoT communications from a security perspective. The experimental test scenarios are numerically evaluated, where it is observed that the proposed approach attains significantly improves intrusion detection accuracy, delay, and throughput performance as compared to the existing baseline approaches.

Keywords
Author Keywords: Games; Intrusion detection; Throughput; Game theory; Internet of Things; Mathematical model; Internet of Things; intrusion detection; multi-layer games; security measures
KeyWords Plus: SELFISH NODE DETECTION; COOPERATION

Author Information
Reprint Address:
International Islamic University Malaysia
Dept Elect & Comp Engg, Kulliyyah Engg, Kuala Lumpur 50728, Malaysia.

Corresponding Address: Khan, BU (corresponding author)
Int Islamic Univ Malaysia, Dept Elect & Comp Engg, Kulliyyah Engg, Kuala Lumpur 50728, Malaysia.

Addresses:
[1] Int Islamic Univ Malaysia, Dept Elect & Comp Engg, Kulliyyah Engg, Kuala Lumpur 50728, Malaysia

E-mail Addresses: burhan.iium@gmail.com

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Higher Education Malaysia (Kementerian Pendidikan Tinggi) through the Fundamental Research Grant Scheme (FRGS)</td>
<td>FRGS/1/2019/ICT03/UAM/01/2 FRGS19-137-0746</td>
</tr>
</tbody>
</table>

View funding text

Publisher
Cited References: 34

1. A Fog based System Model for Cooperative IoT Node Pairing using Matching Theory
 By: Abedin, Sarfarz Fakhrul; Alam, Md. Golam Rabil; Tran, Nguyen H.; et al.
 2015 17TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM APNOMS Pages: 309-314 Published: 2015

2. A comprehensive insight into game theory in relevance to cyber security
 By: Anwar, F.; Khan, B. U. I.; Olanrewaju, R. F.; et al.
 Indonesian J. Electr. Eng. Informat. (IJEEI) Volume: 8 Issue: 1 Pages: 189-203 Published: 2020

3. That Internet of Things Thing
 By: Ashton, K.
 RFID Journal Volume: 22 Pages: 97-114 Published: 2009

4. TWOACK: Preventing selfishness in mobile ad hoc networks
 By: Balakrishnan, K.; Deng, J.; Varshney, P.K.

5. Title: [not available]
 By: Basar, T.; Olsder, G.J.
 Dynamic noncooperative game theory Volume: 23 Published: 1993
 Publisher: Siam, New York City

6. Performance analysis of the CONFIDANT protocol (Cooperation Of Nodes: Fairness In Dynamic Ad-hoc Networks)
 By: Buchegger, S.; Le Boudec, J-Y.

7. Stimulating cooperation in self-organizing mobile ad hoc networks
 By: Buttyan, L.; Hubaux, JP
 MOBILE NETWORKS & APPLICATIONS Volume: 8 Issue: 5 Pages: 579-592 Published: OCT 2003

8. Outwitting smart selfish nodes in wireless mesh networks
 By: Cheng, Zan-Kai; Tan, Su-Wei; Gai, Bok-Min; et al.
 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS Volume: 26 Issue: 9 Special Issue: 51 Pages: 1163-1175 Published: SEP 2013