Anti-inflammatory effects of trihoney in hypercholesterolemic atherosclerotic rabbits: A comparative study with atorvastatin

Abstract

Introduction: Hypercholesterolemia has been proven as a main pathogenic trigger for pathogenesis of atherosclerosis. Atherosclerosis characterised by chronic inflammatory process and increased expression of inflammatory markers. In this study; Trihoney (a combination of three types of natural honey namely: Trigona, mellifera, and Dorsata) was investigated for its anti-inflammatory effect in hypercholesterolemic atherosclerotic rabbits. Methods: Thirty male New Zealand white rabbits (NZW) were grouped into: normal diet (C), normal diet with 0.6g/kg/day of Trihoney (C+H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.6g/kg/day of Trihoney (HCD+H), and 1% cholesterol diet with 2mg/kg/day of atorvastatin (HCD+At). After 12 weeks of starting the experiment, animals were sacrificed and serum analysed for homocysteine and pro-atherogenic inflammatory markers such as: interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α). Fasting serum glucose was analysed to assess glycaemic status. Results: Trihoney treated group showed significantly lower (p<.) serum IL-1β and IL-6 compared to the HCD group. Trihoney supplementation resulted in significant (p<.) reduction of serum TNF-α compared to HCD group. Experimental group HCD had serum homocysteine level comparable to that of the control groups without any significant difference despite little increase in the mean value. Trihoney treated group had serum homocysteine comparable to the controls. All experimental groups showed fasting serum glucose comparable to the control. Conclusion: This study showed that Trihoney has an anti-inflammatory function and may be used as an adjuvant to statins for management of atherosclerotic cardiovascular diseases even in diabetic subjects. © 2020 UPM Press. All rights reserved.
Authors would like to acknowledge the RMC-IIUM for financial support of this research through the Fundamental Research Grant Scheme for Research Acculturation of Early Career Researchers (FRGS-RACER) [Grant No. RACER19-012-0012].

References (50)

1. Helkin, A., Stein, J.J., Lin, S., Siddiqui, S., Maier, K.G., Gahtan, V.
 Dyslipidemia Part 1 - Review of Lipid Metabolism and Vascular Cell Physiology
doi: 10.1177/1538574416628654
 View at Publisher

 Inflammatory cytokines in atherosclerosis: Current therapeutic approaches (Open Access)
 http://eurheartj.oxfordjournals.org/
doi: 10.1093/eurheartj/ehv759
 View at Publisher

 Increased intercellular adhesion molecule-1 immunoreactivity in the sclera-choroid complex in hypercholesterolemia experimental model (Open Access)
doi: 10.5935/0034-7280.20140046
 View at Publisher

 Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: The Rotterdam Study (Open Access)
 doi: 10.1161/01.ATV.0000016249.96529.B8
 View at Publisher

5. Tian, X., Zhao, L., Song, X., Yan, Y., Liu, N., Li, T., Yan, B., (...), Liu, B.
 HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway (Open Access)
 http://www.hindawi.com/journals/biomed/
doi: 10.1155/2016/4847874
 View at Publisher
6 Majtanova, N., Cernak, M., Majtan, J.

Honey: A Natural Remedy for Eye Diseases

doi: 10.1159/000452116

View at Publisher

7 Al-Waili, N.S.

Natural Honey Lowers Plasma Glucose, C-Reactive Protein, Homocysteine, and Blood Lips in Healthy, Diabetic, and Hyperlipidemic Subjects: Comparison with Dextrose and Sucrose

doi: 10.1089/109662004322984789

View at Publisher

8 Reagan-Shaw, S., Nihal, M., Ahmad, N.

Dose translation from animal to human studies revisited

http://www.fasebj.org/cgi/reprint/22/3/659
doi: 10.1096/fj.07-9574LSF

View at Publisher

9 Du, B., Xu, G., Cao, H., Cui, W., Lin, S., Liu, Y., Qin, L.

Effects of atorvastatin on expression of ICAM-1 in atherosclerotic rabbits

doi: 10.2459/JCM.0b013e3283541fca

View at Publisher

Effects of atorvastatin, fluvastatin, pravastatin, and simvastatin on endothelial function, lipid peroxidation, and aortic atherosclerosis in hypercholesterolemic rabbits (Open Access)

View at Publisher

11 Song, X., Liu, H., Wang, X., Li, Z., Huang, C.

Atorvastatin combined with poly-unsaturated fatty acid confers better improvement of dyslipidemia and endothelium function (Open Access)

(2014) Lipids in Health and Disease, 13 (1), art. no. 186. Cited 5 times.
http://www.lipidworld.com/home/

View at Publisher

12 (2012) International Islamic University Malaysia Animal Ethics Policy AEPC. AEPC. Kuantan

13 Bolayirli, I.M., Aslan, M., Balci, H., Altug, T., Hacibekiroglu, M., Seven, A.

Effects of atorvastatin therapy on hypercholesterolemic rabbits with respect to oxidative stress, nitric oxide pathway and homocysteine

doi: 10.1016/j.lfs.2007.04.027

View at Publisher
Brown, S.
Taking blood sample from rabbit

Chang, C.T., Lee, P.Y., Cheah, W.L.
The prevalence of cardiovascular risk factors in the young and middle-aged rural population in Sarawak, Malaysia
http://ernd.usm.my/journal/journal/OA23.pdf
View at Publisher

Sukardi, S., Yaakub, H., Ganabadi, S., Poon, M.S.
Serum testosterone levels and body weight gain of male rabbits fed with Morinda citrifolia fruit juice

Yalçinkaya-Demirsöz, S., Depboylu, B., Doğru-Abbasoğlu, S., Ünlüçerçi, Y., Uysal, M.
Effects of high methionine diet on oxidative stress in serum, apo-B containing lipoproteins, heart, and aorta in rabbits
http://www.annclinlabsci.org/cgi/reprint/39/4/386

Baccaurea angulata fruit inhibits lipid peroxidation and induces the increase in antioxidant enzyme activities
http://www.springerlink.com/content/1436-6207
doi: 10.1007/s00394-015-0961-7
View at Publisher

Ramji, D.P., Davies, T.S.
Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets (Open Access)
doi: 10.1016/j.cytogfr.2015.04.003
View at Publisher

Grebe, A., Hoss, F., Latz, E.
NLRP3 inflammasome and the IL-1 pathway in atherosclerosis
http://circres.ahajournals.org
doi: 10.1161/CIRCRESAHA.118.311362
View at Publisher

Rosenwasser, L.J.
Biologic activities of IL-1 and its role in human disease
doi: 10.1016/S0091-6749(98)0118-6
View at Publisher
22. Schuett, H., Luchtefeld, M., Grothusen, C., Grote, K., Schieffer, B.
How much is too much? Interleukin-6 and its signalling in atherosclerosis
http://www.schattauer.de/en/magazine/subject-areas/journals-a-z/thrombosis-and-
haemostasis/contents/archive/issue/946/manuscript/11655/show.html
doi: 10.1160/TH09-05-0297
View at Publisher

Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: Results from the
ATHEROREMO-IVUS study
www.elsevier.com/locate/atherosclerosis
doi: 10.1016/j.atherosclerosis.2014.06.010
View at Publisher

24. Abimbola, M.M.
(2015) In Vivo Antioxidant Potential and Cardioprotective Activities of Baccaurea Angulata Fruit in Relation to Suppressed Inflammatory
Response
International Islamic University Malaysia

25. Hadi, N., Al-Amran, F., Mohammad Hussein, A., Rezeg, F.
Evaluation of the effects of glimepiride (Amaryl) and repaglinide (novoNorm) on atherosclerosis progression in high cholesterol-fed male rabbits
http://www.elsevier.com/journals/journal-of-cardiovascular-disease-research/0975-3583
doi: 10.4103/0975-3583.91592
View at Publisher

Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice
(Open Access)
doi: 10.1016/j.cardiores.2005.01.008
View at Publisher

Cytokine-mediated inflammation mediates painful neuropathy from metabolic syndrome
(Open Access)
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0192333&type=printable
doi: 10.1371/journal.pone.0192333
View at Publisher

Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases
doi: 10.1038/nrd3800
View at Publisher
Van Tassell, B.W., Toldo, S., Mezzaroma, E., Abbate, A.

Targeting interleukin-1 in heart disease (Open Access)

doi: 10.1161/CIRCULATIONAHA.113.003199

View at Publisher

Tetè, S., Tripodi, D., Rosati, M., Conti, F., Maccagro, G., Saggini, A., Salini, V., (...), Theoharides, T.C.

Endothelial cells, cholesterol, cytokines, and aging (Open Access)

doi: 10.1177/039463201202500205

View at Publisher

Hussein, S.Z., Mohd Yusoff, K., Makpol, S., Mohd Yusof, Y.A.

Gelam honey inhibits the production of proinflammatory, mediators NO, PGE 2, TNF-α, and IL-6 in carrageenan-induced acute paw edema in rats (Open Access)

doi: 10.1155/2012/109636

View at Publisher

Salehian, O., Rashidi, M., Sedaghat, M.

Oral supplementation of natural honey and levels of inflammatory and anti-inflammatory plasma cytokines during 10-week of intensive treadmill training in endurance-trained athletes

View at Publisher

Majtan, J.

Honey: An immunomodulator in wound healing

www.blackwellscience.com/journals/wound/index.html
doi: 10.1111/wrr.12117

View at Publisher

Majtan, J., Kumar, P., Majtan, T., Walls, A.F., Klaudiny, J.

Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes

doi: 10.1111/j.1600-0625.2009.00994.x

View at Publisher

Tonks, A.J., Cooper, R.A., Jones, K.P., Blair, S., Parton, J., Tonks, A.

Honey stimulates inflammatory cytokine production from monocytes

doi: 10.1016/S1043-4666(03)00092-9

View at Publisher
36 Ghazali, W.S.W., Romli, A.C., Mohamed, M.

Effects of honey supplementation on inflammatory markers among chronic smokers: A randomized controlled trial
(Open Access)

(2017) BMC Complementary and Alternative Medicine, 17 (1), art. no. 175. Cited 6 times.
http://www.biomedcentral.com/bmccomplementalternmed/
doi: 10.1186/s12906-017-1703-6

View at Publisher

37 Hussein, S.Z., Mohd Yusoff, K., Makpol, S., Mohd Yusof, Y.A.

Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway
(Open Access)

(2013) PLoS ONE, 8 (8), art. no. e72365. Cited 37 times.
http://www.plosone.org/article/fetchObjectAttachment.action;jsessionid=588C6EDAC11F00B8C3CE303EE5AE6772
uri=info%3Adoi%2F10.1371%2Fjournal.pone.0072365&representation=PDF
doi: 10.1371/journal.pone.0072365

View at Publisher

38 Al-Waili, N.S., Boni, N.S.

Natural honey lowers plasma prostaglandin concentrations in normal individuals

www.liebertonline.com/jmf
doi: 10.1089/109662003322233530

View at Publisher

Honey and cardiovascular risk factors, in normal individuals and in patients with diabetes mellitus or dyslipidemia

doi: 10.1089/jmf.2012.0285

View at Publisher

40 Zhou, G., Ge, S., Liu, D., Xu, G., Zhang, R., Yin, Q., Zhu, W., (...), Liu, X.

Atorvastatin reduces plaque vulnerability in an atherosclerotic rabbit model by altering the 5-lipoxygenase pathway
(Open Access)

doi: 10.1159/000296017

View at Publisher

41 Taylor, F.C., Huffman, M., Ebrahim, S.

Statin therapy for primary prevention of cardiovascular disease

doi: 10.1001/jama.2013.281348

View at Publisher

Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1582-4934
doi: 10.1111/j.1582-4934.2010.01036.x

View at Publisher
43 Diomede, L., Albani, D., Sottocorno, M., Donati, M.B., Bianchi, M., Fruscella, P., Salmona, M.
In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products (Open Access)
http://atvb.ahajournals.org/
doi: 10.1161/hq0801.094222

View at Publisher

Statin modulation of human T-cell proliferation, IL-1 β and IL-17 production, and IFN- γ T cell expression: Synergy with conventional immunosuppressive agents (Open Access)
doi: 10.1155/2013/434586

View at Publisher

45 Lyngdoh, T., Vollenweider, P., Waerber, G., Marques-Vidal, P.
Association of statins with inflammatory cytokines: A population-based Colaus study

View at Publisher

46 Antonopoulos, A.S., Margaritis, M., Lee, R., Channon, K., Antoniades, C.
Statins as anti-inflammatory agents in atherogenesis: Molecular mechanisms and lessons from the recent clinical trials
http://www.eurekaselect.com/606/journal/current-pharmaceutical-design

doi: 10.2174/138161212799504803

View at Publisher

47 Weitz-Schmidt, G.
Statins as anti-inflammatory agents
www.elsevier.com/locate/tips
doi: 10.1016/S0165-6147(02)02077-1

View at Publisher

Relationship between plasma homocysteine level and lipid profiles in a community-based Chinese population (Open Access)
(2017) Lipids in Health and Disease, 16 (1), art. no. 54. Cited 16 times.
http://www.lipidworld.com/home/
doi: 10.1186/s12944-017-0441-6

View at Publisher

Plasma homocysteine in subjects with familial combined hyperlipidemia
doi: 10.1016/S0021-9150(02)00312-X

View at Publisher
Protection by natural honey against hyperhomocysteinemia in rats

doi: 10.2174/1567270000603010044

© Copyright 2020 Elsevier B.V., All rights reserved.