
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-5, March 2020

532

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

Abstract: Internet of Things aims to automate and add

intelligence into existing processes by introducing constrained

devices such as sensors and actuators. These constrained devices

lack in computation and memory resources and are usually

battery powered for ease of deployments. Due to their limited

capabilities, the constrained devices usually host proprietary

protocols, platforms, data formats and data structures for

communications and therefore, are unable to communicate with

devices from different vendors. This inability leads to

interoperability issues in Internet of Things which, is in fact

against the spirit of Internet of things which, envisions

interconnection of billions of devices and hence, results in an

isolated, vendor-locked and close-loop deployments of IoT

solutions. Various approaches have been made by the industry

and academia to resolve the interoperability issues amongst

constrained devices. However, majority of the solutions are at

different layers of the communication stack but do not provide a

holistic solution for the problem. In more recent research, there

have been theoretical proposals to virtualize constrained devices to

abstract their data so that its always available to applications. We

have adopted this technique in our research to virtualize the entire

Internet of Things network so that virtual TCP/IP based protocols

can operate on virtual networks for enabling interoperability. This

paper proposes the operations of the Constrained Device

Virtualization Algorithm and then simulates it in CloudSIM to

derive performance results. The paper further highlights open

issues for future research in this area.

Keywords : Internet of Things, virtualization, software defined

networks, FoG computing.

I. INTRODUCTION

The aspirations of IoT as defined by the European

Research Cluster is a technology that allows people and

things to be connected anytime, anyplace, with anything and

anyone, ideally using any path/network, and any service [1].

Technical requirements based on this definition imply that

IoT has very high requirement for interoperability between

devices or things.

A “thing” in IoT is basically an autonomous, physical or

digital object with sensing or actuation capability depending

on the application. These objects are designed to bridge the

connection between the software domain and the physical

world [2].

To date, there are many IoT architectures designed to

Revised Manuscript Received on February 06, 2020.

* Correspondence Author
Shariq Haseeb*, Faculty of Engineering, International Islamic

University Malaysia, Gombak, Malaysia. Email: shariqkhan1@yahoo.com

Aisha Hassan A. Hashim, Faculty of Engineering, International Islamic
University Malaysia, Gombak, Malaysia. Email: aisha@iium.edu.my

Othman O. Khalifa, Faculty of Engineering, International Islamic

University Malaysia, Gombak, Malaysia. Email: khalifa@iium.edu.my
Ahmad Faris Ismail, Faculty of Engineering, International Islamic

University Malaysia, Gombak, Malaysia. Email: faris@iium.edu.my

incorporate these constrained IoT devices. Some architecture

is for real-time and batch processing [3], some are edge

network based [4], some architectures exploit the resources

of the Cloud [5] and some of the more advanced architectures

exploit the capabilities of data analytics and AI within the IoT

network [6], [7]. However, they do not deviate much from the

typical IoT reference architecture shown in Fig. 1.

Fig. 1.A typical IoT reference architecture

It can be seen in Fig. 1, that the bottom most layer of the

architecture is where the constrained IoT devices reside.

These IoT devices have communication capabilities to either

communicate with a gateway or directly with the IoT

backend for data exchange. An IoT gateway is typically a

computing device that is able to communicate with the

constrained IoT devices. Some gateways have the ability to

store and process data, perform simple automation tasks and

manage constrained IoT devices. The IoT backend could

reside locally within the IoT network or on a Cloud

datacenter. It is responsible for data aggregation, IoT rules

and process automation and also serves as a standardized

interface to the smart IoT applications.

The typical IoT reference architecture has been

implemented in various IoT deployments around the world.

Even though, architecturally the IoT deployments are similar,

the protocols used within the architecture is very different

due to the nature of the constrained IoT devices. In fact, there

are more than 300 IoT backends available from different

vendors [8] to cater for the heterogeneous nature of the IoT

devices.

Beyond just architectural requirements, heterogeneity in

IoT devices leads to interoperability issues that have been

presented in various literature and standards documents [9].

Interoperability issues are responsible for about 17% of

added cost in IoT deployments [10].

Performance Analysis of Constrained Device

Virtualization Algorithm

Shariq Haseeb, Aisha Hassan A. Hashim, Othman O. Khalifa, Ahmad Faris Ismail

Performance Analysis of Constrained Device Virtualization Algorithm

533

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

In order to solve interoperability issues in IoT, we are

proposing a new virtualization architecture for constrained

IoT devices coupled with constrained device virtualization

algorithms. We will then simulate the operations of the

algorithm and elaborate on the obtained results to evaluate

the feasibility of the new algorithm.

II. DEFINITION OF A CONSTRAINED DEVICE

Constrained IoT devices are typically end nodes in an IoT

network. They have the capability to sense one or more

parameters from the environment and some constrained

devices also have the ability to actuate their physical

environments to achieve a specialized purpose [11].

Fig. 2. A typical constrained device architecture

 A typical constrained device architecture is shown in Fig.

2. It consists of a micro-controller that functions as a central

unit powered by a power source. It is responsible for

receiving, transmitting and processing sensor data through

and Analogue to Digital Converter (ADC). If required,

micro-controller can also trigger other devices through the

actuating interface available on the constrained device.

 Architecturally, constrained IoT devices can communicate

via a gateway or sometimes communicate directly to backend

IoT Cloud based platforms for data transfer. More often than

not, they operate in lossy wireless conditions employing

protocols such as Bluetooth Low Energy (BLE), 802.15.4

(6LoWPAN, Zigbee, Thread, WirelessHART etc.) and more

recently Low Power Wide Area Network (LPWAN). They

are also mostly battery powered for ease of remote

deployments.

 Constrained IoT devices have following characteristics:

 Battery powered energy source: in order to conserve

energy, many constrained IoT devices follow a

sleeping schedule that allows them to perform a

transaction such that transmit data or check status

and then enter hibernation state before waking up to

perform next transaction.

 Limited processing ability: in order to minimize cost

and manage power constraints, most constrained

IoT devices employ only a limited processing

capability that makes them highly specialized.

 Limited memory size: to manage memory

restriction, constraint IoT devices limit the size of

state and buffers. Hence, they deploy only simple

codes and limited communication stacks.

 Limited capability: to perform tasks within the

constraints, these devices are highly specialized in

nature.

 Vulnerable radio conditions: these devices usually

operate under low throughput and lossy network

conditions.

 Highly asymmetric link characteristics: in order to

maintain specialization, their uplink and downlink

conditions are usually not symmetrical. In other

words, a sensor is optimized to send while an

actuator is specialized to receive.

 No direct human interaction: these devices are

designed to be deployed in remote conditions and

hence, have very limited human interaction ability

for troubleshooting or management. Most devices

even compromise on a user interface since it is not

required.

 Physical size and cost: these devices are ideally

designed to be small and cheap so that they can be

easily deployed and replaced when needed.

In order to simplify and understand the constrained IoT

devices, Internet Engineering Task Force (IETF) has

published and RFC 7228 that categorizes these constrained

IoT devices into three simple classes as follow [12]:

 Class 0: these devices are considered to be very

constrained and tend of have constraints on

memory and processing capabilities. Typically,

their memory size is less than 10KB and flash

memory is below 100KB. These devices can not

directly communicate over the Internet and have to

be connected to gateways or other intermediate

devices for Internet communication. Based on a

blog [13] that conducted a study on these type of

devices, the most minimal network stack takes up

most of the resources of class 0 devices and no

other protocols can be loaded onto the device.

 Class 1: these devices are quite constrained in code

space and processing abilities. They cannot easily

communicate over the Internet using TCP/IP

protocols such as using HTTP, Transport Layer

Security (TLS), and related security protocols and

XML-based data representations. However, they

can employ specially designed low power IoT

stacks such as User Datagram Protocol (UDP),

CoAP, light weight security protocols like

Datagram Transport Layer Security (DTLS) for

communication. In order to enable full Internet

communication, an intermediate device such as a

gateway is recommended [13].

 Class 2: these devices are less constrained and are

able to support similar protocol stack to those

supported by a mobile phone, notebook or a server

[12]. However, they still need to deploy lightweight

protocols and energy-efficient algorithms to

operate efficiently. It is recommended to use this

type of devices to promote interoperability in IoT

[13].

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-5, March 2020

534

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

 Beyond Class 2: energy constraints may exist on

these types of devices. However, they are not

constrained by protocol and are able to

communicate over the Internet using the full

communication stack.

This paper focusses mainly on class 0 and class 1 devices

that are widely deployed in the IoT applications.

III. INTEROPERABILITY ISSUES DUE TO

CONSTRAINED DEVICES

Constrained devices have limited capabilities and hence

host their own flavor of communication protocols leading to

heterogeneous nature of such devices. Below are reasons for

this heterogeneity:

 Connectivity Issues: constrained IoT devices may

host multiple communication interfaces. These

interfaces operate on different frequency bands, use

different Media Access Control (MAC) and Internet

Protocol (IP) for communication [14]. If two

devices don’t use the same communication

interface, they would never be able to communicate.

This is the main reason for constrained IoT device

interoperability issues.

 Multi-Vendor Devices: although standardization

bodies propose recommendations for developing

IoT devices, most vendors don’t follow these

recommendations because they drive up cost and

does not allow product differentiations [8]. Hence,

devices originating from different vendors tend to

be closed looped.

 Legacy IoT Deployments: many closed-loop

vertical smart services like building management,

home automation, vehicle tracking, personnel

tracking, etc. have existed even before the term

‘IoT’ was defined [15]. The problem with these

solutions is that they were never meant to

interoperate hence, they do not deploy protocols for

Internet based communication.

 Multiple IoT Platforms: more than 300 IoT

platforms have been presented in the literature [16].

Each of these platform implement their own

mechanisms for data abstraction and manipulation.

Hence, rather than promoting interoperability, they

tend to lock down the IoT solutions to their own

domain.

 Multiple Syntax: each model or make of IoT device

generates data in a particular format. Even if two

devices generate exact same data but in different

order of format, they will not be able to

communicate with each other. This usually happens

because data formats are dictated by the applications

[17].

 Data Semantics: IoT device data is not coupled with

explanations about the data. This leads to almost no

understating of messages between IoT systems.

Furthermore, many times different unit systems may

be used across devices from different regions and

hence interoperability between the devices in not

possible [18].

IV. APPROACHES TO TACKLE

INTEROPERABILITY ISSUES

To date, there have been various attempts by the industry

and academia for solving the interoperability issues in IoT.

These approaches have been classified across following

major areas:

 Architecture and Platform Standards: platform

consolidations have been the central focus of most

research. The aim of this exercise is to consolidate

IoT platform from similar use case and industry to

propose common platform. The rationale behind

this is to allow devices from the same industrial use

to be able to communicate with each other [19].

Although this is a good initiative, it only resolves

the interoperability issues within a single industry

and does not offer a holistic solution to the

interoperability problem.

 MAC Layer Consolidation: MAC layer related

initiatives focus on limiting the number of

communication protocols through standardization

of MAC layer for IoT use [20]. In our opinion, this is

not an ultimate solution to the interoperability issue

because firstly the choices of communication will be

greatly limited and secondly it does not solve the

problem even if only two types of MAC protocols

are allowed.

 IP Layer Approach: one of the other proposals is to

use IP protocol for communication. Although this is

a fantastic idea because this allows IoT devices to

communicate over the Internet but the only problem

with this approach is that all existing IoT devices

need to be upgraded [21]. Furthermore, the

constrained devices will not be able to support the

complete TCP/IP communication stack.

 Infrastructure Approach: at the infrastructure layer,

technology such as Software-defined Networks, Fog

Computing and sensor virtualization have been

employed to achieve interoperability. SDN

approach to achieving interoperability is by splitting

the control and data planes in SOs. It can be

observed from the research in [22] that SDN allows

different IoT device, using completely different

protocols and connected to completely different

networks can communicate with each other over

common IPv6 protocol. SDN is able to achieve this

by abstracting data from the device and since data is

not constrained by protocol, interoperability can

easily happen [23]. However, this approach only

abstracts the data from the devices and does not

cater of the operations of the device which, is

needed for long term network maintenance and

device manageability.

After evaluating all the approaches, we believe that the

sensor virtualization approach can be expanded further to

incorporate protocol virtualizations to offer a complete

solution for achieving interoperability in IoT deployments.

Performance Analysis of Constrained Device Virtualization Algorithm

535

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

V. CONSTRAINED DEVICE VIRTUALIZATION

ARCHITECTURE

Proposed IoT architecture leverages on the existing

architecture and the lessons learned from the software

defined telecommunication architecture.

The modified architecture is necessary for hosting virtual

constrained devices. The new architecture is shown in Fig. 3

where, the IoT device could simply be a dumb device with

purely a communication interface coupled with sensing or

actuating capabilities. They could either directly connect to

the IoT backend or connect with the help of an IoT Gateway.

The IoT gateways would also be lightweight because they

only need to maintain a device registry to know the IoT

devices connected to it. The gateways also need to host two

communication stacks for connecting to the IoT devices and

the IoT backend.

The real changes have to be made on the IoT backend that

has to host more capabilities compared to the traditional IoT

backend. The IoT backend would typically reside on the

Cloud or a Fog computing node if Fog based topology is

employed. This is to take advantage of the virtually

unconstrained resources available in the Cloud or Fog

infrastructure. The IoT backend would need to support device

virtualization where each dumb IoT device would be

represented by a virtual IoT device. The virtual IoT device

emulates the physical constrained device capabilities but is

represented as a software code in the IoT backed.

Fig. 3. Virtualized IoT network architecture

VI. CONSTRAINED DEVICE VIRTUALIZATION

ALGORITHM

The first steps in this algorithm is to virtualize the

constrained IoT devices. In order to virtualize a physical

constrained device, it is important to identify the most

important attributes of a device that needs to be abstracted.

The critical parameters which define a physical constrained

device are as follows:

 Device ID: a unique device ID to identify it on the

IoT network. This is could follow the standard MAC

address, or any incremental addressing format

configured by the device manufacturer.

 IoT Device IP (Optional): this is the IP address of

the constrained device in its current network if the

device supports IP protocol.

 Gateway ID: a unique gateway ID to identify it on

the IoT backend. This is could follow the standard

MAC address, or an incremental addressing format

configured by the device manufacturer.

 Gateway IP (Optional): this is the IP address of the

gateway in its current network.

 Device Architecture (Optional): the current

hardware specifications of the device such as

processor, memory, battery, communication

interface etc.

 CPU Utilization (Optional): the CPU utilization of

the IoT device as a data stream to the IoT backend.

 Memory Utilization (Optional): the memory

utilization of the IoT device as a data stream to the

IoT backend.

 Battery Level (Optional): the battery utilization of

the IoT device as a data stream to the IoT backend.

 Data Stream: data and its attributes that the IoT

device is generating.

 Service Stream: types of services offered by the IoT

device.

 Status Stream: current status of the IoT device that

could be online, offline, asleep etc.

 Network Stream: network related parameters

gathered by the physical constrained device.

Fig. 4. System architecture of virtual constrained

device

With all the known attributes, a software implementation

of the physical constrained device can be developed based

on the proposed system architecture shown in Fig. 4.

Where the physical attributes layer represents the services,

compute-ability and communication abilities of the

physical constrained device. This layer also forms the data

point that defines the ability of the virtualized constrained

device. The software processes layer contains snippets of

software codes that don’t need to execute in real-time but

can be executed when required. This layer abstracts the

computation intensive behavior of a physical constrained

device. The runtime environment layer hosts the code

snippets and processes that are always running. These

processes are related to the transmission, receiving,

periodicity of data and controllability of the virtual device.

They are designed to emulate the physical constrained

device abilities. The final layer is the API layer that forms

the entry point of interfacing with the virtual constrained

device. Some of these APIs could be periodic and stream

based such as data, service, status and network streams.

While, others could be triggers through applications or

other devices within the

network.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-5, March 2020

536

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

In order for a virtual constrained device to appear to

operate like a physical constrained device, certain IoT

backend adaptations are required.

The first of those changes is the creation of a virtual

interface. As soon as a virtual constrained device is

activated, the IoT backend host (Cloud or Fog) would need

to create a virtual network interface associated to its own

physical interface. This is critical for a virtual device to be

backwards compatible with the network elements.

The second important step for the IoT backend is to

request and assign an IP address from the address broker

within the network. This will allow the virtual interface to

be addressable on the network.

The final step is for the IoT backend to maintain a

binding of an IP address to the virtual interface to the

virtual device. This bookkeeping step is critical to

determine when a traffic is meant for the virtual

constrained device and it will also help in clean-up process

when the virtual constrained device is terminated or

migrates to a different network. The flow of the steps is

sown in Fig. 5.

Fig. 5. Constrained device virtualization algorithm

VII. PERFORMANCE PARAMETERS

The variable parameters of the simulation are configured

as follows:

Parameters Characteristics

Number of

constrained devices

5, 10,15,20,25,30,35,40,45,50

Number of Fog

Gateways

1

Constrained Device

Virtualization Mode
 Hybrid Cloud and Fog

 On Cloud only

 On Fog only

The fixed parameters of the simulation are configured as

follows:

Parameters Characteristics

Total Available Network

Bandwidth

Unlimited

Network Link

Characteristics

Constant

Packet Drops Characteristics Blocking with no packet

drop

Packet Loss Characteristics Nil

Simulation Time 10800 sec (3 hours)

Resource Management

Interval

100 sec

Network Device Intel x86

Architecture

Network Device OS Linux

Network Device Time Zone +8.0 (Malaysia)

Virtual Machine Manager Xen

The device characteristics are set according to the mode of

operation as follows:
Device Characteristics

Cloud Datacenter CPU Cores: 16 cores

 MIPS: 44800 MHz

 RAM: 40000 MB

 MIPS utilization cost: 0.01

 Hierarchical Level: 0

 Busy Power: 103/core

 Idle Power: 83.25/core

Cloud VM Instance CPU Cores: 1 core

 MIPS: 2800 MHz

 RAM: 4000 MB

 MIPS utilization cost: 0.01

 Hierarchical Level: 0

 Busy Power: 103/core

 Idle Power: 83.25/core

Internet Proxy (Hybrid Cloud

and Fog mode)
 CPU Cores: 1 core

 MIPS: 2800 MHz

 RAM: 4000 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 1

 Busy Power: 107.339/core

 Idle Power: 83.433/core

Internet Proxy (Cloud only
mode)

 CPU Cores: 0 core

 MIPS: NA MHz

 RAM: 0 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 1

 Busy Power: NA/core

 Idle Power: NA/core

Internet Proxy (Fog only

mode)
 CPU Cores: 16 core

 MIPS: 44800 MHz

 RAM: 40000 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 1

 Busy Power: 107.339/core

 Idle Power: 83.433/core

Fog Gateway (Hybrid Cloud

and Fog mode)
 CPU Cores: 1 core

 MIPS: 2800 MHz

 RAM: 4000 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 1

 Busy Power: 107.339/core

 Idle Power: 83.433/core

Fog Gateway (Cloud only

mode)
 CPU Cores: 0 core

 MIPS: NA MHz

 RAM: 0 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 1

 Busy Power: NA/core

 Idle Power: NA/core

Fog Gateway (Fog only mode) CPU Cores: 1 core

 MIPS: 2800 MHz

 RAM: 4000 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 1

 Busy Power: 107.339/core

 Idle Power: 83.433/core

Constrained Device CPU Cores: 1 core

 MIPS: 500 MHz

 RAM: 1000 MB

 MIPS utilization rate: 0.0

 Hierarchical Level: 3

 Busy Power: 87.53/core

 Idle Power: 82.44/core

Performance Analysis of Constrained Device Virtualization Algorithm

537

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

The link characteristics are set as follows:

Links Characteristics

Cloud and Internet Proxy

(Typical Internet Link)
 Downlink Bandwidth:

10000Mbps

 Uplink Bandwidth:

100Mbps

 Link latency: 100ms

Network Proxy and Fog

Gateway (Typical Intranet

Link)

 Downlink Bandwidth:

10000Mbps

 Uplink Bandwidth:

10000Mbps

 Link latency: 2ms

Fog gateway and

Constrained Device

(Typical Wireless Sensor

Network Link)

 Downlink Bandwidth:

10000Mbps

 Uplink Bandwidth:

10000Mbps

 Link latency: 15ms

Constrained Device and its

sensors/actuators (Typical

Bus Link)

 Link latency: 1ms

The traffic characteristics are set as follows:

Traffic Source Characteristics

Sensors Deterministic Transmit

Distribution: every 5ms

 Status signaling: 1 status

packet/data packet

 Packet size: 127 bytes

Actuators Periodic Instructions: every

5ms

 Status signaling: 1 status

packet/data packet

 Packet size: 127 bytes

Inter Software

Module Instance
 Reactive Transmit

Distribution: in response to a

trigger

 Packet size: 1280 bytes

Tuple characteristics are set as follows:

Tuple Type CPU utilization

(million

instructions)

Network

length

(bytes)

Sensor Data 100 127

Actuator Message 100 127

Low Computation

Software Module

Instance

500 1280

Medium Computation

Software Module

Instance

1000 1280

High Computation

Software Module

Instance

1500 1280

VIII. RESULTS AND DISCUSSIONS

Average end-to-end latency can be evaluated for each

operation modes through simulation of the above scenario.

Graph in Fig. 6 shows the results for End-to-end latency

and its components for the virtualization setup phase in

hybrid operation mode.

Fig. 6. Virtualization phase end-to-end latency in

hybrid mode

The first observation that can be drawn from the result in

Figure 5.3 is that, 15 to 20 constrained devices per virtual

cluster is the most optimal number of devices that should

be virtualized in a single Fog node to keep the overall

virtualization latency to minimum. Beyond 20 constrained

devices, the average latency starts to increase

exponentially, and this would adversely affect the

performance of the IoT application that is deploying this

algorithm in hybrid mode. Further, breakdown of the

average latency into its subcomponents reveals that the

virtualization process itself is not responsible for the

exponential latency but the synchronization steps with the

Cloud is the major contributor. This is because limited

computation on a single Fog device becomes the

bottleneck to the Cloud.

Graph in Fig. 7 shows the results for End-to-end latency

and its components for the virtualization setup phase in

Cloud only operation mode.

Fig. 7. Virtualization phase end-to-end latency in

Cloud only mode

From the graph in Fig. 7, it can again be observed that 15

to 20 constrained devices per virtual cluster is the most

optimal and the major contributor to the overall latency is

again the synchronization step between the Cloud and the

gateway which becomes the bottleneck to the Cloud.

Graph in Fig. 8 shows the results for end-to-end latency

in pure Fog only mode of operation. Here, it can be

observed that even up to 40 constrained devices per virtual

cluster gives and acceptable

latency.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-5, March 2020

538

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

Even though computation is no longer a concern in this

mode, beyond 40 constrained devices, the constant

synchronization of states between the physical constrained

device and the virtual constrained device becomes the

major contributor to the latency as the single Fog node

becomes the bottleneck.

Fig. 8. Virtualization phase end-to-end latency in Fog

only mode

Fig. 9 compares the total latency of each mode of operation

and it is fairly obvious that the best mode of operation is Fog

only mode and the worst is the Cloud only mode. However,

Fog only mode is not the most practical mode of operation

because it is virtually impossible to provide such a high

computation resource at the network edge.

Fig. 9 Virtualization phase end-to-end latency in all

modes

IX. CONCLUSION

In conclusion, it can be noted that a physical constrained IoT

device can be virtualized along with its communication

protocols to provide low latency setup that is suited to the

real-time use cases as long as the number of nodes is below

15 nodes/cluster. Virtualization of constrained IoT devices

also allows virtual protocols to be executed on constrained

IoT devices. Virtual protocols can then be used for

communication between devices to achieve interoperability

without considering the actual protocols on the physical

constrained IoT device.

REFERENCES

1. B. N. Gopalsamy, “Communication Trends in Internet of Things,” in

igi-global.com, 2017, pp. 284–305.
2. B. Cheng, S. Zhao, J. Qian, Z. Zhai, and J. Chen, “Lightweight Service

Mashup Middleware with REST Style Architecture for IoT

Applications,” IEEE Trans. Netw. Serv. Manag., vol. 15, no. 3, pp.

1063–1075, 2018.

3. S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric
architecture to provide novel M2M services,” in 2014 IEEE World

Forum on Internet of Things, WF-IoT 2014, 2014, pp. 514–519.

4. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The
internet of things architecture, possible applications and key

challenges,” in Proceedings - 10th International Conference on

Frontiers of Information Technology, FIT 2012, 2012, pp. 257–260.
5. F. Carrez, T. Elsaleh, D. Gomez, L. Sanchez, J. Lanza, and P. Grace,

“A Reference Architecture for federating IoT infrastructures

supporting semantic interoperability,” in EuCNC 2017 - European
Conference on Networks and Communications, 2017, pp. 1–6.

6. J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the Edge: A Scalable

IoT Architecture Based on Transparent Computing,” IEEE Netw., vol.
31, no. 5, pp. 96–105, 2017.

7. D. Singh, G. Tripathi, A. M. Alberti, and A. Jara, “Semantic edge

computing and IoT architecture for military health services in
battlefield,” in 2017 14th IEEE Annual Consumer Communications

and Networking Conference, CCNC 2017, 2017, pp. 185–190.

8. M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in

Internet of Things: Taxonomies and Open Challenges,” Mob.

Networks Appl., pp. 1–14, Jul. 2018.

9. M. K. Shin, K. Nam, S. Pack, S. Lee, and R. Krishnan, “Verification of
NFV Services : Problem Statement and Challenges (Research Report

No.02),” 2016.

10. Interoperability and Open-Source Solutions for the Internet of Things,
vol. 10218. 2017.

11. R. Sutaria and R. Govindachari, “Making sense of interoperability:
Protocols and Standardization initiatives in IOT,” in 2nd International

Workshop on Computing and Networking for Internet of Things

(CoMNet-IoT) held in conjunction with 14th International Conference
on Distributed Computing and Networking (ICDCN 2013), 2013, pp.

2–5.

12. RFC, “Terminology for Constrained-Node Networks [RFC 7228],”
Ietf Lwig. pp. 1–17, 2014.

13. Nagasai, “Classification of IoT Devices - CISO Platform.” CISO

Platforn, Bangalore, 2017.

14. R. Sanchez-Iborra and M. D. Cano, “State of the art in LP-WAN

solutions for industrial IoT services,” Sensors (Switzerland), vol. 16,

no. 5. 2016.
15. S. K. Datta and C. Bonnet, “Extending DataTweet IoT architecture for

virtual IoT devices,” Proc. - 2017 IEEE Int. Conf. Internet Things,

IEEE Green Comput. Commun. IEEE Cyber, Phys. Soc. Comput.
IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, vol.

2018-Janua, no. Vid, pp. 689–694, 2018.

16. T. Pflanzner and A. Kertesz, “A survey of IoT cloud providers,” in
2016 39th International Convention on Information and

Communication Technology, Electronics and Microelectronics,

MIPRO 2016 - Proceedings, 2016, pp. 730–735.
17. E. S. Pramukantoro, W. Yahya, and F. A. Bakhtiar, “Performance

evaluation of IoT middleware for syntactical Interoperability,” 2017

Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2017, vol.
2018-Janua, pp. 29–34, Oct. 2018.

18. D. Andročec, M. Novak, and D. Oreški, “Using semantic web for

internet of things interoperability: A systematic review,” International
Journal on Semantic Web and Information Systems, vol. 14, no. 4. pp.

147–171, 2018.

19. S. Haseeb, A. H. A. Hashim, O. O. Khalifa, and A. F. Ismail,
“Connectivity, interoperability and manageability challenges in

internet of things,” in AIP Conference Proceedings, 2017, vol. 1883.

20. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications,” IEEE Commun. Surv. Tutorials, vol. 17,

no. 4, pp. 2347–2376, 2015.
21. B. Tank, H. Upadhyay, and H. Patel, “A survey on iot privacy issues

and mitigation techniques,” in ACM International Conference

Proceeding Series, 2016, vol. 04-05-Marc.
22. Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk,

and A. Rindos, “SDIoT: a software defined based internet of things

framework,” J. Ambient Intell. Humaniz. Comput., vol. 6, no. 4, pp.
453–461, Aug. 2015.

23. C. Prazeres and M. Serrano, “SOFT-IoT: Self-organizing FOG of

things,” Proc. - IEEE 30th Int. Conf. Adv. Inf. Netw. Appl. Work.
WAINA 2016, pp. 803–808, 2016.

Performance Analysis of Constrained Device Virtualization Algorithm

539

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E2606039520/2020©BEIESP

DOI: 10.35940/ijitee.E2606.039520

AUTHORS PROFILE

Shariq Haseeb is an IoT Specialist at TMR&D and

REDtone IoT, Shariq Haseeb has architected several IoT

solutions under the Smart City concept. He is the key
architect being the TMR&D Smart Helmet, Smart

Streetlight, Smart Vehicle and REDtone IoT’s citizen

engagement solution (CitiAct). Prior to joining REDtone
IoT, Shariq was Head of Project in MIMOS Berhad. He has over 12 years

research and prototyping experience in the field of computer communication

and networks. He has worked cross functionally within protocol, network,
infrastructure and device development to invent bleeding edge technology

for global market space. He has filed more than 50 patents within Malaysia

and Internationally and has more than 35 publications in journals and
conferences.

Aisha Hassan Abdalla Hashim received her Ph.D in

Computer Engineering (2007), M.Sc. in Computer

Science (1996) and B.Sc. in Electronics Engineering
(1990). She won the Best Graduating Ph.D Student Award

during the IIUM Convocation ceremony in 2007. She

joined IIUM in 1997 and is currently a Professor at the
Department of Electrical and Computer Engineering. Professor Aisha has

taught several courses related to Communication and Computer Engineering

and is actively involved in curriculum development and programme
accreditation. She has been a member of the Department Board of Studies for

several years. She received the Best Teacher Award during IIUM Quality

Day in 2007. Prof. Aisha has been appointed as external examiner/visiting
professor/adjunct professor at different universities. Professor Aisha who is

actively involved in research and postgraduate programmes, has published

more than 200 journal/conference papers, and supervised/co-supervised
more than 60 Ph.D/Master students. She received the Promising Researcher

Award in 2009 during IIUM Quality Day. She has also received many

medals/awards in different national/international research exhibitions. One
of her research exhibitions won the Promising Commercial Value Award

(Second Runner Up) in IRIIE 2014. As a researcher, she has secured research

grants from IIUM, Ministry of Higher Education (MOHE) and Ministry of
Science, Technology and Innovation (MOSTI). She has actively contributed

as a reviewer /technical committee member in many journals/conferences.

Professor Aisha has established several teaching/ research networks between
IIUM and overseas universities. She has participated in initiating several

MoUs as well as encouraging the PhD Student Mobility programme between

IIUM and overseas Universities.

Othman Omran Khalifa received his Bachelor’s
degree in Electronic Engineering from Garyounis

University, Libya in 1986. He obtained his Master degree

in Electronics Science Engineering and PhD from
Newcastle University, UK in 1996 and 2000 respectively.

He worked in industry for eight years and he is currently a
Professor and at the department of Electrical and Computer Engineering,

International Islamic University Malaysia. His area of research interest is

Communication Systems, Digital image / video processing, coding and
Compression, Wavelets, Fractal and Pattern Recognition. Prof. Khalifa is a

Charter Engineer (CEng) and Senior member of IEEE, USA and a member

IET, UK. and a member of the Council of Professors of Malaysia. Prof.
khalifa was the chairman of the International Conference on Computer and

Communication Engineering (ICCCE), 2006, 2010, 2012, 2014. Prof.

Khalifa has extensively contributed through his writings in international
journals, conferences and book. He published more than 450 publications

including 10 books. He is a member of many international advisory boards

for many international conferences a member of many editorial boards of
many international.

Ahmad Faris Ismail is a Professor and the Dean of

Engineering at the International Islamic University

Malaysia (IIUM). He was the IIUM Deputy Rector

(Research & Innovation) from July 2009 until June 2013.

He served as the Dean of Engineering from 1997 until

2009. He obtained his B.Sc. in Chemical Engineering, in 1988, from the
University of Houston, USA, and Ph.D in Engineering from Rice University,

USA, in 1993. He is the Chief Editor for the IIUM Engineering Journal. Prof.

Ismail was a Visiting Academic at the University of Southern Queensland in
2014 and a Visiting Scientist at Kyoto University in 2004. He has been

invited as keynote speakers at various international conferences and

congresses. He is also a co-inventor for at least eight filed patents of research

products and has published more than 200 papers in refereed journals and

conference proceedings. His research topics include energy and
environment, simulation and modelling, computational fluid dynamics,

combustion, and nanofluidss.

