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Abstract: Internet of Things aims to automate and add 

intelligence into existing processes by introducing constrained 

devices such as sensors and actuators. These constrained devices 

lack in computation and memory resources and are usually 

battery powered for ease of deployments. Due to their limited 

capabilities, the constrained devices usually host proprietary 

protocols, platforms, data formats and data structures for 

communications and therefore, are unable to communicate with 

devices from different vendors. This inability leads to 

interoperability issues in Internet of Things which, is in fact 

against the spirit of Internet of things which, envisions 

interconnection of billions of devices and hence, results in an 

isolated, vendor-locked and close-loop deployments of IoT 

solutions. Various approaches have been made by the industry 

and academia to resolve the interoperability issues amongst 

constrained devices. However, majority of the solutions are at 

different layers of the communication stack but do not provide a 

holistic solution for the problem. In more recent research, there 

have been theoretical proposals to virtualize constrained devices to 

abstract their data so that its always available to applications. We 

have adopted this technique in our research to virtualize the entire 

Internet of Things network so that virtual TCP/IP based protocols 

can operate on virtual networks for enabling interoperability. This 

paper proposes the operations of the Constrained Device 

Virtualization Algorithm and then simulates it in CloudSIM to 

derive performance results. The paper further highlights open 

issues for future research in this area. 

 
Keywords : Internet of Things, virtualization, software defined 

networks, FoG computing.  

I. INTRODUCTION 

The aspirations of IoT as defined by the European 

Research Cluster is a technology that allows people and 

things to be connected anytime, anyplace, with anything and 

anyone, ideally using any path/network, and any service [1]. 

Technical requirements based on this definition imply that 

IoT has very high requirement for interoperability between 

devices or things. 

A “thing” in IoT is basically an autonomous, physical or 

digital object with sensing or actuation capability depending 

on the application. These objects are designed to bridge the 

connection between the software domain and the physical 

world [2]. 

To date, there are many IoT architectures designed to 
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incorporate these constrained IoT devices. Some architecture 

is for real-time and batch processing [3], some are edge 

network based [4], some architectures exploit the resources 

of the Cloud [5] and some of the more advanced architectures 

exploit the capabilities of data analytics and AI within the IoT 

network [6], [7]. However, they do not deviate much from the 

typical IoT reference architecture shown in Fig. 1. 

 
Fig. 1.A typical IoT reference architecture 

It can be seen in Fig. 1, that the bottom most layer of the 

architecture is where the constrained IoT devices reside. 

These IoT devices have communication capabilities to either 

communicate with a gateway or directly with the IoT 

backend for data exchange. An IoT gateway is typically a 

computing device that is able to communicate with the 

constrained IoT devices. Some gateways have the ability to 

store and process data, perform simple automation tasks and 

manage constrained IoT devices. The IoT backend could 

reside locally within the IoT network or on a Cloud 

datacenter. It is responsible for data aggregation, IoT rules 

and process automation and also serves as a standardized 

interface to the smart IoT applications. 

The typical IoT reference architecture has been 

implemented in various IoT deployments around the world. 

Even though, architecturally the IoT deployments are similar, 

the protocols used within the architecture is very different 

due to the nature of the constrained IoT devices. In fact, there 

are more than 300 IoT backends available from different 

vendors [8] to cater for the heterogeneous nature of the IoT 

devices. 

Beyond just architectural requirements, heterogeneity in 

IoT devices leads to interoperability issues that have been 

presented in various literature and standards documents [9]. 

Interoperability issues are responsible for about 17% of 

added cost in IoT deployments [10]. 
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In order to solve interoperability issues in IoT, we are 

proposing a new virtualization architecture for constrained 

IoT devices coupled with constrained device virtualization 

algorithms. We will then simulate the operations of the 

algorithm and elaborate on the obtained results to evaluate 

the feasibility of the new algorithm. 

II.  DEFINITION OF A CONSTRAINED DEVICE 

Constrained IoT devices are typically end nodes in an IoT 

network. They have the capability to sense one or more 

parameters from the environment and some constrained 

devices also have the ability to actuate their physical 

environments to achieve a specialized purpose [11]. 

 
Fig. 2. A typical constrained device architecture 

 A typical constrained device architecture is shown in Fig. 

2. It consists of a micro-controller that functions as a central 

unit powered by a power source. It is responsible for 

receiving, transmitting and processing sensor data through 

and Analogue to Digital Converter (ADC). If required, 

micro-controller can also trigger other devices through the 

actuating interface available on the constrained device. 

 Architecturally, constrained IoT devices can communicate 

via a gateway or sometimes communicate directly to backend 

IoT Cloud based platforms for data transfer. More often than 

not, they operate in lossy wireless conditions employing 

protocols such as Bluetooth Low Energy (BLE), 802.15.4 

(6LoWPAN, Zigbee, Thread, WirelessHART etc.) and more 

recently Low Power Wide Area Network (LPWAN). They 

are also mostly battery powered for ease of remote 

deployments. 

 Constrained IoT devices have following characteristics: 

 Battery powered energy source: in order to conserve 

energy, many constrained IoT devices follow a 

sleeping schedule that allows them to perform a 

transaction such that transmit data or check status 

and then enter hibernation state before waking up to 

perform next transaction. 

 Limited processing ability: in order to minimize cost 

and manage power constraints, most constrained 

IoT devices employ only a limited processing 

capability that makes them highly specialized. 

 Limited memory size: to manage memory 

restriction, constraint IoT devices limit the size of 

state and buffers. Hence, they deploy only simple 

codes and limited communication stacks. 

 Limited capability: to perform tasks within the 

constraints, these devices are highly specialized in 

nature. 

 Vulnerable radio conditions: these devices usually 

operate under low throughput and lossy network 

conditions. 

 Highly asymmetric link characteristics: in order to 

maintain specialization, their uplink and downlink 

conditions are usually not symmetrical. In other 

words, a sensor is optimized to send while an 

actuator is specialized to receive. 

 No direct human interaction: these devices are 

designed to be deployed in remote conditions and 

hence, have very limited human interaction ability 

for troubleshooting or management. Most devices 

even compromise on a user interface since it is not 

required. 

 Physical size and cost: these devices are ideally 

designed to be small and cheap so that they can be 

easily deployed and replaced when needed. 

In order to simplify and understand the constrained IoT 

devices, Internet Engineering Task Force (IETF) has 

published and RFC 7228 that categorizes these constrained 

IoT devices into three simple classes as follow [12]: 

 Class 0: these devices are considered to be very 

constrained and tend of have constraints on 

memory and processing capabilities. Typically, 

their memory size is less than 10KB and flash 

memory is below 100KB. These devices can not 

directly communicate over the Internet and have to 

be connected to gateways or other intermediate 

devices for Internet communication. Based on a 

blog [13] that conducted a study on these type of 

devices, the most minimal network stack takes up 

most of the resources of class 0 devices and no 

other protocols can be loaded onto the device. 

 Class 1: these devices are quite constrained in code 

space and processing abilities. They cannot easily 

communicate over the Internet using TCP/IP 

protocols such as using HTTP, Transport Layer 

Security (TLS), and related security protocols and 

XML-based data representations. However, they 

can employ specially designed low power IoT 

stacks such as User Datagram Protocol (UDP), 

CoAP, light weight security protocols like 

Datagram Transport Layer Security (DTLS) for 

communication. In order to enable full Internet 

communication, an intermediate device such as a 

gateway is recommended [13]. 

 Class 2: these devices are less constrained and are 

able to support similar protocol stack to those 

supported by a mobile phone, notebook or a server 

[12]. However, they still need to deploy lightweight 

protocols and energy-efficient algorithms to 

operate efficiently. It is recommended to use this 

type of devices to promote interoperability in IoT 

[13]. 
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 Beyond Class 2: energy constraints may exist on 

these types of devices. However, they are not 

constrained by protocol and are able to 

communicate over the Internet using the full 

communication stack. 

This paper focusses mainly on class 0 and class 1 devices 

that are widely deployed in the IoT applications. 

III. INTEROPERABILITY ISSUES DUE TO 

CONSTRAINED DEVICES 

Constrained devices have limited capabilities and hence 

host their own flavor of communication protocols leading to 

heterogeneous nature of such devices. Below are reasons for 

this heterogeneity: 

 Connectivity Issues: constrained IoT devices may 

host multiple communication interfaces. These 

interfaces operate on different frequency bands, use 

different Media Access Control (MAC) and Internet 

Protocol (IP) for communication [14]. If two 

devices don’t use the same communication 

interface, they would never be able to communicate. 

This is the main reason for constrained IoT device 

interoperability issues. 

 Multi-Vendor Devices: although standardization 

bodies propose recommendations for developing 

IoT devices, most vendors don’t follow these 

recommendations because they drive up cost and 

does not allow product differentiations [8]. Hence, 

devices originating from different vendors tend to 

be closed looped. 

 Legacy IoT Deployments: many closed-loop 

vertical smart services like building management, 

home automation, vehicle tracking, personnel 

tracking, etc. have existed even before the term 

‘IoT’ was defined [15]. The problem with these 

solutions is that they were never meant to 

interoperate hence, they do not deploy protocols for 

Internet based communication. 

 Multiple IoT Platforms: more than 300 IoT 

platforms have been presented in the literature [16]. 

Each of these platform implement their own 

mechanisms for data abstraction and manipulation. 

Hence, rather than promoting interoperability, they 

tend to lock down the IoT solutions to their own 

domain. 

 Multiple Syntax: each model or make of IoT device 

generates data in a particular format. Even if two 

devices generate exact same data but in different 

order of format, they will not be able to 

communicate with each other. This usually happens 

because data formats are dictated by the applications 

[17]. 

 Data Semantics: IoT device data is not coupled with 

explanations about the data. This leads to almost no 

understating of messages between IoT systems. 

Furthermore, many times different unit systems may 

be used across devices from different regions and 

hence interoperability between the devices in not 

possible [18]. 

IV. APPROACHES TO TACKLE 

INTEROPERABILITY ISSUES 

To date, there have been various attempts by the industry 

and academia for solving the interoperability issues in IoT. 

These approaches have been classified across following 

major areas: 

 Architecture and Platform Standards: platform 

consolidations have been the central focus of most 

research. The aim of this exercise is to consolidate 

IoT platform from similar use case and industry to 

propose common platform. The rationale behind 

this is to allow devices from the same industrial use 

to be able to communicate with each other [19]. 

Although this is a good initiative, it only resolves 

the interoperability issues within a single industry 

and does not offer a holistic solution to the 

interoperability problem. 

 MAC Layer Consolidation: MAC layer related 

initiatives focus on limiting the number of 

communication protocols through standardization 

of MAC layer for IoT use [20]. In our opinion, this is 

not an ultimate solution to the interoperability issue 

because firstly the choices of communication will be 

greatly limited and secondly it does not solve the 

problem even if only two types of MAC protocols 

are allowed. 

 IP Layer Approach: one of the other proposals is to 

use IP protocol for communication. Although this is 

a fantastic idea because this allows IoT devices to 

communicate over the Internet but the only problem 

with this approach is that all existing IoT devices 

need to be upgraded [21]. Furthermore, the 

constrained devices will not be able to support the 

complete TCP/IP communication stack. 

 Infrastructure Approach: at the infrastructure layer, 

technology such as Software-defined Networks, Fog 

Computing and sensor virtualization have been 

employed to achieve interoperability. SDN 

approach to achieving interoperability is by splitting 

the control and data planes in SOs. It can be 

observed from the research in [22] that SDN allows 

different IoT device, using completely different 

protocols and connected to completely different 

networks can communicate with each other over 

common IPv6 protocol. SDN is able to achieve this 

by abstracting data from the device and since data is 

not constrained by protocol, interoperability can 

easily happen [23]. However, this approach only 

abstracts the data from the devices and does not 

cater of the operations of the device which, is 

needed for long term network maintenance and 

device manageability. 

After evaluating all the approaches, we believe that the 

sensor virtualization approach can be expanded further to 

incorporate protocol virtualizations to offer a complete 

solution for achieving interoperability in IoT deployments. 
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V. CONSTRAINED DEVICE VIRTUALIZATION 

ARCHITECTURE 

Proposed IoT architecture leverages on the existing 

architecture and the lessons learned from the software 

defined telecommunication architecture.  

The modified architecture is necessary for hosting virtual 

constrained devices. The new architecture is shown in Fig. 3 

where, the IoT device could simply be a dumb device with 

purely a communication interface coupled with sensing or 

actuating capabilities. They could either directly connect to 

the IoT backend or connect with the help of an IoT Gateway. 

The IoT gateways would also be lightweight because they 

only need to maintain a device registry to know the IoT 

devices connected to it. The gateways also need to host two 

communication stacks for connecting to the IoT devices and 

the IoT backend. 

The real changes have to be made on the IoT backend that 

has to host more capabilities compared to the traditional IoT 

backend. The IoT backend would typically reside on the 

Cloud or a Fog computing node if Fog based topology is 

employed. This is to take advantage of the virtually 

unconstrained resources available in the Cloud or Fog 

infrastructure. The IoT backend would need to support device 

virtualization where each dumb IoT device would be 

represented by a virtual IoT device. The virtual IoT device 

emulates the physical constrained device capabilities but is 

represented as a software code in the IoT backed. 

 
Fig. 3. Virtualized IoT network architecture 

VI. CONSTRAINED DEVICE VIRTUALIZATION 

ALGORITHM 

The first steps in this algorithm is to virtualize the 

constrained IoT devices. In order to virtualize a physical 

constrained device, it is important to identify the most 

important attributes of a device that needs to be abstracted. 

The critical parameters which define a physical constrained 

device are as follows: 

 Device ID: a unique device ID to identify it on the 

IoT network. This is could follow the standard MAC 

address, or any incremental addressing format 

configured by the device manufacturer. 

 IoT Device IP (Optional): this is the IP address of 

the constrained device in its current network if the 

device supports IP protocol. 

 Gateway ID: a unique gateway ID to identify it on 

the IoT backend. This is could follow the standard 

MAC address, or an incremental addressing format 

configured by the device manufacturer. 

 Gateway IP (Optional): this is the IP address of the 

gateway in its current network. 

 Device Architecture (Optional): the current 

hardware specifications of the device such as 

processor, memory, battery, communication 

interface etc. 

 CPU Utilization (Optional): the CPU utilization of 

the IoT device as a data stream to the IoT backend. 

 Memory Utilization (Optional): the memory 

utilization of the IoT device as a data stream to the 

IoT backend. 

 Battery Level (Optional): the battery utilization of 

the IoT device as a data stream to the IoT backend. 

 Data Stream: data and its attributes that the IoT 

device is generating. 

 Service Stream: types of services offered by the IoT 

device. 

 Status Stream: current status of the IoT device that 

could be online, offline, asleep etc. 

 Network Stream: network related parameters 

gathered by the physical constrained device. 

 
Fig. 4. System architecture of virtual constrained 

device 

With all the known attributes, a software implementation 

of the physical constrained device can be developed based 

on the proposed system architecture shown in Fig. 4. 

Where the physical attributes layer represents the services, 

compute-ability and communication abilities of the 

physical constrained device. This layer also forms the data 

point that defines the ability of the virtualized constrained 

device. The software processes layer contains snippets of 

software codes that don’t need to execute in real-time but 

can be executed when required. This layer abstracts the 

computation intensive behavior of a physical constrained 

device. The runtime environment layer hosts the code 

snippets and processes that are always running. These 

processes are related to the transmission, receiving, 

periodicity of data and controllability of the virtual device. 

They are designed to emulate the physical constrained 

device abilities. The final layer is the API layer that forms 

the entry point of interfacing with the virtual constrained 

device. Some of these APIs could be periodic and stream 

based such as data, service, status and network streams. 

While, others could be triggers through applications or 

other devices within the 

network. 
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In order for a virtual constrained device to appear to 

operate like a physical constrained device, certain IoT 

backend adaptations are required.  

The first of those changes is the creation of a virtual 

interface. As soon as a virtual constrained device is 

activated, the IoT backend host (Cloud or Fog) would need 

to create a virtual network interface associated to its own 

physical interface. This is critical for a virtual device to be 

backwards compatible with the network elements. 

The second important step for the IoT backend is to 

request and assign an IP address from the address broker 

within the network. This will allow the virtual interface to 

be addressable on the network. 

The final step is for the IoT backend to maintain a 

binding of an IP address to the virtual interface to the 

virtual device. This bookkeeping step is critical to 

determine when a traffic is meant for the virtual 

constrained device and it will also help in clean-up process 

when the virtual constrained device is terminated or 

migrates to a different network. The flow of the steps is 

sown in Fig. 5. 

 
 

Fig. 5. Constrained device virtualization algorithm 

VII.  PERFORMANCE PARAMETERS 

The variable parameters of the simulation are configured 

as follows: 

Parameters Characteristics 

Number of 

constrained devices 

5, 10,15,20,25,30,35,40,45,50 

Number of Fog 

Gateways 

1 

Constrained Device 

Virtualization Mode 
 Hybrid Cloud and Fog 

 On Cloud only 

 On Fog only 

The fixed parameters of the simulation are configured as 

follows: 

Parameters Characteristics 

Total Available Network 

Bandwidth 

Unlimited 

Network Link 

Characteristics 

Constant 

Packet Drops Characteristics Blocking with no packet 

drop  

Packet Loss Characteristics Nil 

Simulation Time 10800 sec (3 hours) 

Resource Management 

Interval 

100 sec 

Network Device Intel x86 

Architecture 

Network Device OS Linux 

Network Device Time Zone +8.0 (Malaysia) 

Virtual Machine Manager Xen 

The device characteristics are set according to the mode of 

operation as follows: 
Device Characteristics 

Cloud Datacenter  CPU Cores: 16 cores 

 MIPS: 44800 MHz 

 RAM: 40000 MB 

 MIPS utilization cost: 0.01 

 Hierarchical Level: 0 

 Busy Power: 103/core 

 Idle Power: 83.25/core 

Cloud VM Instance  CPU Cores: 1 core 

 MIPS: 2800 MHz 

 RAM: 4000 MB 

 MIPS utilization cost: 0.01 

 Hierarchical Level: 0 

 Busy Power: 103/core 

 Idle Power: 83.25/core 

Internet Proxy (Hybrid Cloud 

and Fog mode) 
 CPU Cores: 1 core 

 MIPS: 2800 MHz 

 RAM: 4000 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 1 

 Busy Power: 107.339/core 

 Idle Power: 83.433/core 

Internet Proxy (Cloud only 
mode) 

 CPU Cores: 0 core 

 MIPS: NA MHz 

 RAM: 0 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 1 

 Busy Power: NA/core 

 Idle Power: NA/core 

Internet Proxy (Fog only 

mode) 
 CPU Cores: 16 core 

 MIPS: 44800 MHz 

 RAM: 40000 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 1 

 Busy Power: 107.339/core 

 Idle Power: 83.433/core 

Fog Gateway (Hybrid Cloud 

and Fog mode) 
 CPU Cores: 1 core 

 MIPS: 2800 MHz 

 RAM: 4000 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 1 

 Busy Power: 107.339/core 

 Idle Power: 83.433/core 

Fog Gateway (Cloud only 

mode) 
 CPU Cores: 0 core 

 MIPS: NA MHz 

 RAM: 0 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 1 

 Busy Power: NA/core 

 Idle Power: NA/core 

Fog Gateway (Fog only mode)  CPU Cores: 1 core 

 MIPS: 2800 MHz 

 RAM: 4000 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 1 

 Busy Power: 107.339/core 

 Idle Power: 83.433/core 

Constrained Device  CPU Cores: 1 core 

 MIPS: 500 MHz 

 RAM: 1000 MB 

 MIPS utilization rate: 0.0 

 Hierarchical Level: 3 

 Busy Power: 87.53/core 

 Idle Power: 82.44/core 
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The link characteristics are set as follows: 

Links Characteristics 

Cloud and Internet Proxy 

(Typical Internet Link) 
 Downlink Bandwidth: 

10000Mbps 

 Uplink Bandwidth: 

100Mbps 

 Link latency: 100ms 

Network Proxy and Fog 

Gateway (Typical Intranet 

Link) 

 Downlink Bandwidth: 

10000Mbps 

 Uplink Bandwidth: 

10000Mbps 

 Link latency: 2ms 

Fog gateway and 

Constrained Device 

(Typical Wireless Sensor 

Network Link) 

 Downlink Bandwidth: 

10000Mbps 

 Uplink Bandwidth: 

10000Mbps 

 Link latency: 15ms 

Constrained Device and its 

sensors/actuators (Typical 

Bus Link) 

 Link latency: 1ms 

The traffic characteristics are set as follows: 

Traffic Source Characteristics 

Sensors  Deterministic Transmit 

Distribution: every 5ms 

 Status signaling: 1 status 

packet/data packet 

 Packet size: 127 bytes 

Actuators  Periodic Instructions: every 

5ms 

 Status signaling: 1 status 

packet/data packet 

 Packet size: 127 bytes 

Inter Software 

Module Instance 
 Reactive Transmit 

Distribution: in response to a 

trigger 

 Packet size: 1280 bytes 

Tuple characteristics are set as follows: 

Tuple Type CPU utilization 

(million 

instructions) 

Network 

length 

(bytes) 

Sensor Data 100 127 

Actuator Message 100 127 

Low Computation 

Software Module 

Instance 

500 1280 

Medium Computation 

Software Module 

Instance 

1000 1280 

High Computation 

Software Module 

Instance 

1500 1280 

VIII. RESULTS AND DISCUSSIONS 

Average end-to-end latency can be evaluated for each 

operation modes through simulation of the above scenario. 

Graph in Fig. 6 shows the results for End-to-end latency 

and its components for the virtualization setup phase in 

hybrid operation mode. 

 

 
Fig. 6. Virtualization phase end-to-end latency in 

hybrid mode 

The first observation that can be drawn from the result in 

Figure 5.3 is that, 15 to 20 constrained devices per virtual 

cluster is the most optimal number of devices that should 

be virtualized in a single Fog node to keep the overall 

virtualization latency to minimum. Beyond 20 constrained 

devices, the average latency starts to increase 

exponentially, and this would adversely affect the 

performance of the IoT application that is deploying this 

algorithm in hybrid mode. Further, breakdown of the 

average latency into its subcomponents reveals that the 

virtualization process itself is not responsible for the 

exponential latency but the synchronization steps with the 

Cloud is the major contributor. This is because limited 

computation on a single Fog device becomes the 

bottleneck to the Cloud. 

Graph in Fig. 7 shows the results for End-to-end latency 

and its components for the virtualization setup phase in 

Cloud only operation mode. 

  

 
Fig. 7. Virtualization phase end-to-end latency in 

Cloud only mode 

 

From the graph in Fig. 7, it can again be observed that 15 

to 20 constrained devices per virtual cluster is the most 

optimal and the major contributor to the overall latency is 

again the synchronization step between the Cloud and the 

gateway which becomes the bottleneck to the Cloud. 

Graph in Fig. 8 shows the results for end-to-end latency 

in pure Fog only mode of operation. Here, it can be 

observed that even up to 40 constrained devices per virtual 

cluster gives and acceptable 

latency.  
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Even though computation is no longer a concern in this 

mode, beyond 40 constrained devices, the constant 

synchronization of states between the physical constrained 

device and the virtual constrained device becomes the 

major contributor to the latency as the single Fog node 

becomes the bottleneck. 

 
Fig. 8. Virtualization phase end-to-end latency in Fog 

only mode 

Fig. 9 compares the total latency of each mode of operation 

and it is fairly obvious that the best mode of operation is Fog 

only mode and the worst is the Cloud only mode. However, 

Fog only mode is not the most practical mode of operation 

because it is virtually impossible to provide such a high 

computation resource at the network edge. 

  

 
Fig. 9 Virtualization phase end-to-end latency in all 

modes 

IX. CONCLUSION 

In conclusion, it can be noted that a physical constrained IoT 

device can be virtualized along with its communication 

protocols to provide low latency setup that is suited to the 

real-time use cases as long as the number of nodes is below 

15 nodes/cluster. Virtualization of constrained IoT devices 

also allows virtual protocols to be executed on constrained 

IoT devices. Virtual protocols can then be used for 

communication between devices to achieve interoperability 

without considering the actual protocols on the physical 

constrained IoT device. 
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