

Document details

1 of 1

→ Export 速 Download More... >

Cited by 0 documents

Current Drug Delivery Volume 16, Issue 8, 2019, Pages 698-711

Crossing the blood-brain barrier: A review on drug delivery strategies for treatment of the central nervous system diseases (Article)

Author search

Sources

Mansor, N.I., Nordin, N., Mohamed, F., Ling, K.H., Rosli, R., Hassan, Z. 鸟

View additional authors \checkmark

■ Save all to author list

^aMedical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

^bGenetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

^cDepartment of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Malaysia

^dIKOP Sdn. Bhd., Pilot Plant Pharmaceutical Manufacturing, Faculty of Pharmacy, IIUM, Kuantan, Malaysia ^eInternational Institute of Halal Research & Training (INHART), IIUM, Kuala Lumpur, Malaysia ^fUPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor,

"UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

^gCentre for Drug Research, Universiti Sains Malaysia, Gelugor, Penang, Malaysia

View additional affiliations \checkmark

Abstract

Many drugs have been designed to treat diseases of the central nervous system (CNS), especially neurodegenerative diseases. However, the presence of tight junctions at the blood-brain barrier has often compromised the efficiency of drug delivery to target sites in the brain. The principles of drug delivery systems across the blood-brain barrier are dependent on substrate-specific (i.e. protein transport and transcytosis) and non-specific (i.e. transcellular and paracellular) transport pathways, which are crucial factors in attempts to design efficient drug delivery strategies. This review describes how the blood-brain barrier presents the main challenge in delivering drugs to treat brain diseases and discusses the advantages and disadvantages of ongoing neurotherapeutic delivery strategies in overcoming this limitation. In addition, we discuss the application of colloidal carrier systems, particularly nanoparticles, as potential tools for therapy for the CNS diseases. © 2019 Bentham Science Publishers.

SciVal Topic Prominence ()

Topic: Blood-Brain Barrier | Brain | Brain microvascular

Prominence percentile: 98.095

Author keywords

Blood-brain barrier) Central nervous system) Colloidal carrier system) (Drug delivery system) (Nanoparticles)

(j)

Neurodegenerative diseases

Indexed keywords

£Π

Create account || Sign in

Inform me when this document is cited in Scopus:

Set citation Set citation alert > feed >

Related documents

Find more related documents in Scopus based on:

Authors > Keywords >

EMTREE drug terms:	(albumin) (apolipoprotein E) (bleomycin) (chitosan nanoparticle) (chrysin) (curcumin)
	(dopamine) (liposome) (lobradimil) (loperamide) (macrogol) (magnetic nanoparticle)
	(magnetite nanoparticle) (nanoparticle) (nanosphere) (octoxinol) (paclitaxel) (polyacrylamide)
	polyethylenemine polyglactin polylactic acid povidone
	ultrasmall superparamagnetic iron oxide unclassified drug
EMTREE medical terms:	(Article) (blood brain barrier) (central nervous system) (central nervous system disease)
	(drug delivery system) (drug efficacy) (drug use) (endothelium cell) (enzyme specificity)
	(human) (membrane permeability) (nanoencapsulation) (nonhuman) (priority journal)
	(protein transport) (tight junction) (transcytosis)

Chemicals and CAS Registry Numbers:

bleomycin, 11056-06-7, 9041-93-4; chrysin, 12624-02-1, 480-40-0; curcumin, 458-37-7; dopamine, 51-61-6, 62-31-7; lobradimil, 159768-75-9; loperamide, 34552-83-5, 53179-11-6; macrogol, 25322-68-3; octoxinol, 9002-93-1; paclitaxel, 33069-62-4; polyacrylamide, 9003-05-8; polyglactin, 26780-50-7, 34346-01-5; polylactic acid, 26100-51-6; povidone, 9003-39-8

Funding sponsor	Funding number	Acronym
	GRF,NH1014D045	
Universiti Putra Malaysia		

The authors express their gratitude to the Ministry of Agriculture of Malaysia (MOA) for NKEA Research Grant Scheme (NRGS) [Project number: NH1014D045] and Graduate Research Fellowship (GRF), Universiti Putra Malaysia (UPM).

ISSN: 15672018	DOI: 10.2174/1567201816666190828153017
Source Type: Journal Original language: English	Document Type: Article
	Publisher: Bentham Science Publishers

 Nordin, N.; Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;
Copyright 2019 Elsevier B.V., All rights reserved.

What is Scopus Content coverage Scopus blog Scopus API Privacy matters Language 日本語に切り替える 切換到简体中文 切換到繁體中文

Русский язык

Customer Service

Help Contact us