Consideration of Canny Edge Detection for Eye Redness Image Processing: A Review

DOI: 10.1088/1757-899X/551/1/012045

Mohd Adnan, M.R.H., Mohd Zain, A., Haron, H., Zulfaezal Che Azemin, M., Bahari, M.

a Applied Industrial Analytics Research Group (ALIAS), School of Computing, Faculty of Engineering, UTM Johor Bahru, Johor, Malaysia
b Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, IIUM Kuantan, Pahang, Malaysia
c Azman Hashim International Business School (AHIBS), UTM Johor Bahru, Johor, Malaysia

Abstract
Eye redness can be taken as a sign of inflammation which may suggest severity and progression of a specific disease. In image processing, there is apportioning a digital image into relevant features in sets of pixels where is called image segmentation. The image that consists of numerous parts of different colors and textures need to be distinguished in this process. In each digital image, the transformation of images into edges was using edge detection techniques. It represents the contour of the image which could be helpful to recognize the image as an object with its detected edges. The Canny edge detector is a standard edge detection algorithm for many years among the present edge detection algorithms. This paper focuses on important canny edge detection for detecting a region of interest (ROI) in eye redness images. © 2019 Published under licence by IOP Publishing Ltd.

Index Keywords
Edge detection, Green computing, Object detection, Signal detection, Textures; Canny edge detection, Canny edge detectors, Digital image, Edge detection algorithms, Region of interest, Relevant features; Image segmentation

References
- Sánchez Brea, M.L., Barreira Rodríguez, N., Mosquera González, A., Evans, K., Pena-Verdeal, H.
- Zhao, W.J., Duan, F., Li, Z.T., Yang, H.J., Huang, Q., Wu, K.L.
- Rosas-Romero, R., Martínez-Carballido, J., Hernández-Capistrán, J., Uribe-Valencia, L.J.
- Rodriguez, J.D., Johnston, P.R., Ousler, G.W., III, Smith, L.M., Abelson, M.B.
 Automated grading system for evaluation of ocular redness associated with dry eye
Yogamangalam, R., Karthikeyan, B.
Segmentation techniques comparison in image processing

Inter-Grader Reliability of a Supervised Pterygium Redness Grading System

Derakhshani, R., Tankaasala, S.P., Crihalmeau, S., Ross, A., Krishna, R.
A comparative analysis of wavelets for vascular similarity measurement
(2016) Inter. Joint Conf. on Neural Networks (IJCNN), pp. 3870-3876.

Hajare, P.A., Tijare, P.A.
Edge detection techniques for image segmentation

Kabade, A.L., Sangam, D.V.
Canny edge detection algorithm

Rong, W., Li, Z., Zhang, W., Sun, L.
An improved CANNY edge detection algorithm

Detecting Change in Conjunctival Hyperemia Using a Pixel Densitometry Index

Kaur, E.K., Mutenja, V., Gill, E.I.S.
Fuzzy logic based image edge detection algorithm in MATLAB

Park, I.K., Chun, Y.S., Kim, K.G., Yang, H.K., Hwang, J.M.
New clinical grading scales and objective measurement for conjunctival injection

Wolffsohn, J.S.
Incremental nature of anterior eye grading scales determined by objective image analysis

Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M.
Algorithms for digital image processing in diabetic retinopathy

Astvatsatourov, A., Mösges, R.
Image-Based Assessment of Allergic Inflammation under Conjunctival Provocation

Esa, N.M., Zain, A.M., Bahari, M., Yusuf, S.M.
Comparative Study of Segmentation and Feature Extraction Method on Finger Movement