Flank Wear Modeling in High Speed Hard End Milling Using Integrated Approach of Monte Carlo Simulation Method and Taguchi Design

By: Al Hazza, MHF (Al Hazza, Muataz H. F.)[1], Saadah, AIA (Saadah, Abdulraman H. A.)[2]

2019 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA)
Book Group Author(s): IEEE
Published: 2019
Document Type: Proceedings Paper

Conference
Conference: International Conference on Electrical and Computing Technologies and Applications (ICECTA)
Location: Ras Al Khaimah, U ARAB EMIRATES
Date: NOV 19-21, 2019

Abstract
In high speed cutting of hard materials, the wear rate will be very difficult to predict due to the fast and severe changing in the cutting zone. Therefore, using the traditional methods in predicting the output responses will be not the correct options. One of the effective alternatives is by using artificial intelligent approach. The current work presents the simulation of flank wear rate in high-speed hard end milling of AISI H13 hardened steel using an integrated approach of using Monte Carlo (MC) simulation method based on Taguchi design. An experimental investigation was carried out using coated carbide tools to run a set of experiments using Taguchi design (L9) with three input factors at three levels in the following design boundary: cutting speeds (352-452 m/min), feedrate (0.01-0.05 m/rev), and depth of cut of (0.2-0.5) mm. Each experiment was repeated twice using three inserts. The results were used to create 1000 run simulated from 135 experimental reading. A new model was developed using JMP software. The results were analyzed statistically and indicate that even with the complexity of the process, the neural network technique was found to be adequate in predicting and simulating the flank wear length.

Keywords
Author Keywords: High speed end milling; hard materials; Taguchi; Monte Carlo simulation
Keyword Plus: SURFACE-ROUGHNESS; CUTTING FORCE; TOOL WEAR; PREDICTION; PARAMETERS

Author Information
Reprint Address: Al Hazza, MHF (corresponding author)

Address:
[1] Amer Univ Ras Al Khaimah, Mech & Ind Engr, Ras Al Khaymah, U Arab Emirates
[2] Int Islamic Univ Malaysia, MIg & Mat Engr Dept, Kuala Lumpur, Malaysia
E-mail Addresses: muataz.ahazza@aurak.ac.ae

Publisher
IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA

Categories / Classification
Research Areas: Computer Science; Engineering
Web of Science Categories: Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Electrical & Electronic

See more data fields