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ABSTRACT--- Multiple linear regressions (MLR) model is an 

important tool for investigating relationships between several 

response variables and some predictor variables. This method is 

very powerful and commonly used in finance, economic, medical, 

agriculture and many more. The main objective of this paper is to 

compare mean square error (MSE) and the average width 

between alternative linear regression models and linear 

regression model. The alternative method in this study is a 

combination of four methods, namely multiple linear regression 

method, the bootstrap method, a robust regression method and 

fuzzy regression through the construction of algorithms by using 

SAS software. Typically, the alternative method optimized by 

minimizing the mean square error (MSE) and average width. The 

results of the study showed a positive improvement for the 

estimation of parameters generated through these alternative 

methods. 

Index Terms — Alternative linear regression, average width, 

mean square error. 

I. INTRODUCTION 

Multiple linear regressions (MLR) model is an important 

tool for investigating relationships between several response 

variables and some predictor variables. MLR modeling is a 

very powerful technique and commonly used in finance, 

economic, medical, agriculture and many more. The 

relationship is described as a model for estimating the 

dependent variable from independent variables. The 

multiple linear regression models are expressed as:  

0 1 1 n nY X X      K l  (1) 

where Y is the dependent variable, X is independently 

variable,  ’s are crisp parameters and nX are the vector of 

crisp numbers. Usually, l  are assumed to be independent 

random variables with a mean of 0 and variance 2. There 

are several weaknesses of linear regression methods [1]. For 

example, linear regression is sensitive to outlier and a huge 

                                                             
Revised Manuscript Received on July 10, 2019. 

Mohamad Arif Awang Nawi, School of Dental Science, Universiti 

Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia. 

Wan Muhamad Amir W Ahmad, School of Dental Science, 

Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, 

Malaysia. 

Mohamad Shafiq Mohd Ibrahim, Kulliyah of Dentistry, 

International Islamic University Malaysia, Kuantan Campus, Pahang, 

Malaysia. 

Mustafa Mamat, Faculty of Informatics and Computing, Universiti 

Sultan Zainal Abidin, Terengganu, Malaysia. 

Mohd Fadhli Khamis, School of Dental Science, Universiti Sains 

Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.  

Mohamad Afendee Mohamed, Faculty of Informatics and 

Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia. 

effect on regression. Any kind of analysis, the sample size is 

very important for getting better results. A large sample size 

leads to increased precision in estimates of various 

properties of the population, though the results will become 

less accurate if there is a systematic error in the experiment, 

for example, mean square error. It will give effect to the 

estimation of parameters. Mean square error is the sum of 

squares divided by its corresponding degrees of freedom: 

MSE = SSE/(n − p 0) and MSR = SSR/p [2]. It can be shown 

that these mean squares have the following expected values, 

average values in repeated sampling at the same observed X 

levels: 

  2,E MSE    2E MSR   

Note that when 1 0,p  K then    ,E MSR E MSE

otherwise,    .E MSR E MSE  A way of testing whether 

1 0,p  K  is by the F-test. 

In [3] had written the local level model as a normal mixed 

effects model in order to use the restricted maximum 

likelihood estimator (RMLE). In [1] presented an alternative 

way to build the restricted likelihood function, also using 

mixed effects models. Another way to incorporate the 

uncertainty in the estimation of the parameters is through an 

asymptotic sampling of the maximum likelihood estimator 

(MLE) [4], which may be a poor approximation, especially 

for small samples. In [5], [6] states that bootstrap is a 

method for resampling the data based on random sorts of 

retrieval in the sample. In addition, this method also 

provides an estimate of the statistical distribution, the 

coverage probability of the confidence interval, and the 

probability of rejecting the hypothesis test that produces 

accurate results. The theoretical bootstrap model is as 

follows: 

* *ˆY X u   (2) 

where *u  is a random term obtained from the residuals û  

of the initial regression at each iteration ( 1,...., )b b B , a 

sample  *

1

n

i
i

y


 of size (n, 1), is created from the theoretical 

bootstrap model. Since the OLS residuals are smaller than 

the errors they estimate, the random term of the theoretical  
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bootstrap model is constructed from the following transform 

residuals which have the same norm as the error terms iu : 

   1

ˆ ˆ1

1 1

n

i i
i

i ii

u u
u

nh h


 
 

%  

The theoretical bootstrap model is hence expressed as: 

   * *ˆ ,i i iy b X u b  % i= 1… n (3) 

where  *
iu b%  is resample from iu%.  

The width of the bootstrap confidence intervals is closely 

related to the coverage probabilities - confidence intervals 

are wider for those methods where coverage probabilities 

are higher. The sub sampling bootstrap confidence interval 

with large resample size has the shortest intervals and the m 

out of n bootstrap with small resample size has the widest 

intervals. The width of all intervals increases as sample size 

decreases. In [2] proposed parametric and nonparametric 

bootstrap methods for estimating the PMSE of the state 

vector. Fuzzy regression method plays an important role in 

analyzing imprecise data. Mostly, a single independent 

fuzzy variable is used to analyze situation involving fuzzy 

data. Fuzzy Linear Regression (FLR) proposed for the first 

time by the Japanese researcher [7], provides the tools to 

study the problems that failing to the above-mentioned 

assumptions. A fuzzy linear regression model corresponding 

to multiple linear regression equations can be stated as: 

0 1 1 2 2 k ky A A x A x A x    K  (4) 

Previously, explanatory variables 'ix s  are said to be 

concise. However, according to (4), the response variable Y 

is fuzzy and not crisp and so are the parameters. It is the 

interest of this paper that is to estimate the values of these 

parameters. In coming discussion, 'iA s are assumed to be 

symmetric fuzzy numbers which is representable by an 

interval. For instance, iA can be written as 1 1,i c wA a a   

with ica  being the center, iwa the reddish or vagueness 

associated.  

Fuzzy set above reflects the confidence in the regression 

coefficients around ica  in terms of the symmetric triangular 

membership function. When applying this method to fuzzy 

phenomenon, one should be aware that the response variable 

and thus the relation is also fuzzy.  

This 1 1,i c wA a a   can be expressed as 1 1 1,L RA a a   

with 1 1 1L c wa a a   and 1 1 1R c wa a a   [8]. In fuzzy linear 

regression methodology, parameters are estimated by 

minimizing total vagueness in the model. 

0 1 1 2 2j j j k kjy A A x A x A x    K  (5) 

Using 1 1,i c wA a a   we can write 

0 0 1 1 1, , ,

,

j c w c w j nc nw nj

jc jw

y a a a a x a a x

a a

        

 

K
 

thus  

0 1 1jc c c j nc njy a a x a x   L  

njnwjwwjw xaxaay  110
 

where jwy  denotes the radius and thus having a positive 

value. From equation 0 1 1jw w w j nw njy a a x a x   L , we 

shall use an absolute values of ijx . Consider m data points, 

each comprising  1a n row   vector. By minimizing the 

total vagueness of the model-data set combination, with 

condition that each data point belongs to the estimated value 

of the response variable, we can estimate the value for 

parameter iA . 

The main objective of this paper is to propose and 

compare mean square error and average width between 

alternative linear regression models and linear regression 

model. The secondary data was selected in this study based 

on zooplankton to investigate the factors contributing to the 

abundance of zooplankton in Malaysia. The alternative 

method in this study is a combination of four methods, 

namely multiple linear regression method, the bootstrap 

method, a robust regression method, and fuzzy regression. 

The combination of these methods is generated through the 

construction of algorithms through SAS software. 

II. PROCEDURE METHODOLOGY OF 

DEVELOPING ALTERNATIVE ALGORITHM 

A. This Algorithm is used to develop Multiple Linear 

Regression Using SAS software 

/* First of all create multiple linear regression algorithm*/ 

proc reg data= for example, Data 1; 

model y = x1  x2; 

run; 

B. Approach the MM-Estimation Procedure for Robust 

Regression 

/*Algorithm for Robust Regression by using MM-

estimation*/ 

ods graphics on; 

procrobustreg method = MM fwls data= for example Data 

1 plot=fitplot(nolimits) 

plots=all; 

model y = x1 x2 / diagnostics itprint; 

output out=resids out=robout r=residual weight=weight 

outlier=outlier sr=stdres; 

run; 

ods graphics off; 
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Univariate and 

Multivariate Analysis

Adding Bootstrap to the 

Multiple Linear 

Regression with 

Replication 100

Data Collection and 

Cleaning Data

(Diabetes)

 

 Bootstrap Procedure

Formation of Linear 

Regression Model

Results

Data Analysis  Based on 

Alternative Model 

Construction Algorithm 

Fuzzy Regression Model

 

Fuzzy Linear Regression 

Procedure 

 Multiple Linear Regression 

Procedure

 

Diagnosis Test: 

Checking for Outliers
Using Robust Regression

Sellection of MM-

estimate

Linear Regression Using 

SAS Software

 

 Robust Regression Procedure

Yes

No

 
Fig. 1: Flow chart of alternative linear regression model 

C. Next Step is Procedure for Bootstrap with Case 

Resampling 

/* Next step we use a bootstrap with case resampling */  

ods listing close; 

procsurveyselect data= for example Data 1 out=boot1 

method=urs  

samprate=1outhits rep=100 ; /* Depending on the 

researcher to do resampling data as possible */  

run; 

D. Finally, the procedure for Bootstrap into Fuzzy 

Regression Model (Alternative) 

/*Combination of the Bootstrap algorithm with Fuzzy 

Regression*/ 

ods listing close; 

proc optmodel; 

set j= 1..8; 

number y{j}, x1{j}, x2{j}; 

read boot1 into [_n_] y x1 x2; 

print y x1 x2; 

number n init 8; /*Total of Observation*/ 

 

/*Decision Variable Bounded or Not Bounded*/ 

var vaw{1..3}>=0;/*bounded var*/ 

var vac{1..3};        /*not bounded var*/ 

/*Objective Function*/ 

min z1= vaw[1] * n + sum{i in j} x1[i] * vaw[2]+sum{i in 

j} x2[i] * vaw[3]; 

/*Linear Constraints*/ 

con c{i in 1..n}: 

vac[1]+x1[i]*vac[2]+x2[i]*vac[3] -vaw[1]-x1[i]*vaw[2]-

x2[i]*vaw[3]<=y[i]; 

  

con c1{i in 1..n}: 

vac[1]+x1[i]*ac[2]+x2[i]*vac[3] 

+vaw[1]+x1[i]*vaw[2]+x2[i]*vaw[3]>=y[i]; 

 

expand;  

solve; 

print vac vaw; 

quit; 

ods rtf close; 

III. MEASUREMENT OF PARAMETERS 

Zooplankton which is the second producer and primary 

consumer is a very small organism commonly located in 

aquatic ecosystem. It acts as the main energy transferor 

between primary producers and others from the same food 

chain. Zooplankton plays significant roles in influencing 

various aspects of aquatic ecosystem such as the food webs, 

cycling of energy and materials. At the same time, they have 

an undeniable role in natural and artificial fish nutrition. 

Zooplankton abundance and distribution are affected by 

environmental elements such as water temperature, the 

presence of nutrients and physicochemical factors [9]. As 

Zooplanktons respond immediately to environmental 

changes, their species composition is able to show any signs 

of pollution or any decline in the environmental 

qualification of ecosystems. Anzali international wetland 

provides various ecological values that are frequently 

overlooked. Physicochemical factors such as temperature, 

pH, Do and electrical conductivity form part of abiotic 

elements of an aquatic ecosystem [10]. As an example, 

intolerable levels of water temperature would limit the 

abundance of zooplanktons well as high pH levels may lead 

to the death of zooplankton, moreover, sensitivity to the low 

amount of dissolved oxygen would influence on 

zooplankton various life stages and different biological 

functions including feeding, growth, and reproduction. In 

this study, we used temperature, dissolved oxygen, and pH 

as the parameters. Water Temperature: It was determined 

using mercury-in-glass thermometer by dipping it into the 

water and allowed to stabilize for 5 seconds, removing and 

reading immediately recorded. pH: These were measured 

using pH/EC/TDS/Salinity meter by dipping the probes into 

the water until the screen showed a fixed reading as 

described by the manufacturers. Dissolved Oxygen (DO): It 

was determined using DO meter in which the probe was 

inserted into the water until DO reading in mg/l was 

recorded as described by the manufacturers. 

IV. RESULTS AND DISCUSSION 

In Table 1 show that the information about parameters Y, 

X
1
, X

2,
 and X

3
.  

 

 

 

 

 



 

A PERSIST EVALUATION IN WOMEN TRACKING SYSTEM BASED ON CURRENT EPOCH 

380 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  
Retrieval Number: B10650782S319/19©BEIESP                            

DOI : 10.35940/ijrte.B1065.0782S319 

Table 1: Description of the dependent and independent 

variable for zooplankton study 

Variable in Zooplankton Data 

Zooplankton Y = The number of zooplankton 

Temperature X1 = Water temperature (C) 

DO X2 = Dissolved oxygen (mg/l) 

pH X3 = pH value of water 

 

Based on the results of the multiple regression analysis, it 

was found that there are two variables that contribute to the 

abundance of zooplankton such as dissolved oxygen (β = 

0.672; p < 0.05) and water pH value (β = -0.51; p < 0.05). 

Water temperature is not significant to the abundance of 

zooplankton. 

Table 2: Factors contributing to the abundance of 

zooplankton in Malaysia by using multiple linear 

regressions 

Independent 

Variable 
DF β SE p-Value 

Temperature 1 -0.237 0.339 0.491 

DO 1 0.672 0.208 0.004* 

pH 1 -0.51 0.225 0.033* 

R-Square 0.7924    

Adj R-Sq 0.7653    
*p < 0.05 

 

Based on the results of the alternative linear regression 

model show that all of three variables that contribute to the 

abundance of zooplankton such as Water temperature (β = 

0.399; p < 0.0001), dissolved oxygen (β = 0.480; p < 

0.0001) and water pH value (β = -0.844; p < 0.0001). From 

the Adj R-Square obtained from the results, 96.65% of any 

changes in factors affecting the abundance of zooplankton 

can be explained by the three independent variables used in 

this regression such as water temperature, DO and water pH 

value. The Adj R-Square for this alternative model is much 

higher than the Adj R-Square for the linear regression model 

(76.53%). 

Table 3: Factors contributing to the abundance of 

zooplankton in Malaysia by using alternative linear 

regression model approach (n = 100) 

Independent 

Variable 
DF β SE p-Value 

Temperature 1 0.399 0.011 .0001*** 

DO 1 0.480 0.007 .0001*** 

pH 1 -0.844 0.008 .0001*** 

R-Square 0.9665    

Adj R-Sq 0.9665    
***p < 0.0001 

 

Table 4 shows the comparison of the study based on mean 

square error and average width. Based on the mean square 

error that produced by this alternative model of 0.0286. 

While the mean square error of the linear regression model 

of 0.2315. This shows that the mean square error generated 

from this alternative model is much more efficient than the 

linear regression model. In addition, the average width of an 

alternative model that involving 100 replication produces a 

small value rather than a linear regression model. Overall it 

can be concluded that the comparative study involving 

alternative model produced more efficient results compare 

to the linear regression model. 

Table 4: Comparison between multiple linear regression 

model and alternative linear regression model (n = 100) 

Model 

Multiple Linear 

Regression 

Model 

Alternative Linear 

Regression Model 

(n = 100) 

Mean Square 

Error (MSE) 
0.2315 0.0286 

Average Width 

(AW) 
67.548 0.475 

V. CONCLUSION 

In this study gives importance in terms of improvements 

to existing methods and preparing the application of 

parametric methods to the data of a study to be carried out 

more efficiently. This alternative method models are is very 

useful to be applied in various fields and shows a positive 

improvement. Computation by bootstrap method, robust 

regression, and fuzzy linear regression improve the 

efficiency of the results and can handle the problem of linear 

regression method. Typically, the alternative 

method optimized by minimizing the mean square 

error (MSE) and average width. The results of the study 

showed a positive improvement for the estimation of 

parameters generated through these alternative methods. 

This alternative method yields more efficient results 

compared to traditional methods of multiple linear 

regression. There are three special criteria for alternative 

methods. The first, the parameter estimates obtained very 

well with a minimum of sample data. In addition, this 

method can develop strong estimates based on standard 

errors and confidence intervals. Secondly, the problem of 

subtracting data can be addressed and resolved. 

Accordingly, this method can produce a robust estimator 

and generates a high breakdown point with high efficiency. 

The third privilege of an alternative method is algorithm 

constructed so detailed using optimization methods with 

emphasis on research data and consequently, the level of 

efficiency can be improved better. The resulting efficiency 

of the model is tested with significant value-p, the 

estimation parameters to obtain the average width interval 

and the mean square error value. The process of improving 

the existing method in this study can be seen in the positive 

changes in the results based on Tables 3 and 4. Based on the 

average width and mean square error it produces a small 

value. With this alternative method, it can contribute another 

research methodology for researchers in various fields to 

produce more efficient results. 
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