Abstract

Now a days, with obscene workload and a busy life, many experts face problems which more or less result in loss of their customers or to certain overheads that immobilize the customer's satisfaction process. The software being proposed will facilitates professional from various field like in mechanical designing, interior designing and that of architects. This research proposal most likely acts as an effective tool that can reduce the gap between industrial enterprises and customers in addition to other relevant business groups. It helps to visualize architectural designs and interior designs. Before the physical implementation, a virtual model of a real environment can be designed, enabling designers to virtually implement their idea in the given workspace and then view it in a real environment, enabling designers to view their 3D visualizations on their 2D drawings this help them to initially visualize and reconstruct the design without wasting a large amount of money making it a cost-effective solution. Application is based on my observations of the user's aspirations of an augmented reality in design service, a service that combines different social media functionality, augmented reality (AR) and 3-D modeling that embraces the concept of home design, architecture and mechanical designing process. This study connects all users of relevant concerns to an augmented reality's user-intensive design. The paper provides you with the existential complexity of how the AR can be implemented to enhance the work of architects and interior designers: Interno A cost effective solution for Architects and interior designers. The software displays all the features that mechanical designers, interior designers and architects may need. Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved.
References (26)


<table>
<thead>
<tr>
<th>ID</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Dataset</th>
<th>Reference</th>
<th>Cited Times</th>
</tr>
</thead>
</table>

http://www.blackwell-synergy.com/loi/CGF
17. Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.
Augmented reality applications in design and manufacturing
doi: 10.1016/j.cirp.2012.05.010

18. Menk, C., Jundt, E., Koch, R.
Evaluation of geometric registration methods for using spatial augmented reality in the automotive industry
ISBN: 978-390567379-1
doi: 10.2312/PE/VMV/VMV10/243-250

19. Meola, A., Cutolo, F., Carbone, M., Cagnazzo, F., Ferrari, M., Ferrari, V.
Augmented reality in neurosurgery: a systematic review
link.springer.de/link/service/journals/10143/index.htm

A systematic review of augmented reality applications in maintenance
doi: 10.1016/j.rcim.2017.06.002

21. Dacko, S.G.
Enabling smart retail settings via mobile augmented reality shopping apps
www.elsevier.com/inca/publications/store/5/0/5/7/4/0/
doi: 10.1016/j.techfore.2016.09.032

22. Marchand, E., Uchiyama, H., Spindler, F.
Pose Estimation for Augmented Reality: A Hands-On Survey
doi: 10.1109/TVCG.2015.2513408

23. Wang, Y., Zhang, S., Wan, B., He, W., Bai, X.
Point cloud and visual feature-based tracking method for an augmented reality-aided mechanical assembly system
http://www.springerlink.com/content/0268-3768
doi: 10.1007/s00170-018-2575-8
Jain, P., Manweiler, J., Choudhury, R.R.
OverLay: Practical mobile augmented reality
doi: 10.1145/2742647.2742666

Maurer, T., Cook, K., Graybeal, J.
Counter-mine augmented reality training system (CMARTS)
http://spie.org/x1848.xml
ISBN: 978-151062689-8
doi: 10.1117/12.2518120

Ahmed, S.F., Banky, G., Blicblau, A., Joyo, M.K.
Augmented reality with Haptic technology based online experimental based distance learning education technique
http://scitation.aip.org/content/aip/proceeding/aipproceeding/AIPPC
ISBN: 978-073541433-4
doi: 10.1063/1.4965188

© Copyright 2019 Elsevier B.V., All rights reserved.