GREEN TRANSPORTATION SYSTEM

Ataur Rahman
Rafia Afroz
Abdul Hassan Jaafar

IIUM Press
Gombak • 2020
Contents

List of Figures ix
List of Tables xv
Preface xvii

Chapter 1: Green Transportation System Essentaility
1.1 Introduction 1
1.2 Sustainable Urban Transportation System 2
1.3 Rational of Green Transportation System 3
1.4 Green Transportation 4
1.5 Conclusion 5

Chapter 2: Customers Preference For Green Transportation
2.1 Introduction 6
2.2 Public Perception And Attitude 9
 2.2.1 Tests for Confirmatory Factor Analysis (CFA) 11
 2.2.2 Structural Model 14
2.3 Conclusion 16

Chapter 3: Green Transportation Initiation
3.1 Introduction 17
3.2 Green Transport: An Electric Coaster 20
 3.2.1 Coaster Propulsion Power 20
 3.2.2 ICE Powered Coaster into Electric Coaster 21
 3.2.3 Battery Thermal Management System 23
 3.2.4 Electric Power Train 25
 3.2.5 Regenerative Deceleration Energy Mode 27
 3.2.6 Advanced Charging System 28
3.3 Performance of e-Coaster 29
3.4 Conclusion 30
Chapter 4: Battery Thermal Management System for Green Transportation

4.1 Introduction 31
4.2 Mathematical Modelling 33
4.3 Performance Investigation :Experimentally 42
4.4 Control Strategy of Refrigerant 48
4.5 Performance Comparison of EC-BThMS over AC-BThMS 50
4.6 Conclusion 51

Chapter 5: Wireless Battery Management System

5.1 Introduction 52
5.2 Development of WBMS 55
 5.2.1 BCB Development 60
 5.2.2 ZigBee technology 67
 5.2.3 Working Procedure of BCB Wireless Communication 70
 5.2.4 Topology System and its Configuration 70
5.3 Results and Discussion 71
5.4 Conclusion 84

Chapter 6: Advanced Charging System

6.1 Introduction 85
6.2 Development of Advanced Charging System 87
6.3 Results and Discussion 93
 6.3.1 Battery Charging Simulation Result 93
 6.3.2 Battery Charging Experimental Result 94
6.4 Conclusion 103

Chapter 7: Development of Electric Coaster

7.1 Introduction 104
7.2 Conversion Mercedes Benz into e-Coaster 107
7.3 e-Coaster Development 109
7.4 Electrical Induction Motor 118
 7.4.1 Motor Principle of Operation 119
 7.4.2 Power and Torque of Induction Motor 121
 7.4.3 Starting System of the Induction Motor for e-Coaster 122
7.5 Mercedes Benz Electric Coaster 123
Electric Motor Performance on e-Coaster Propulsion

7.5.1 Electric Motor Performance on e-Coaster Propulsion 126
7.5.2 Motor Control 129
7.5.3 Cooling System: e-Coaster Battery 130

Performance of e-Coaster

7.6 Performance of e-Coaster 133
7.6.1 Justification of EC-BThMS for e-Coaster 133

Conclusion

7.7 Conclusion 134

Chapter 8: Electromagnetic Actuator for CVT

8.1 Introduction 135
8.2 Modelling EMA for CVT 136
8.2.1 EMA-CVT Clamping Force 136
8.3 Development of EMA for CVT 140
8.3.1 Control Strategy of EMA: Fuzzy Logic Approach 145
8.4 Laboratory Scale EMA-CVT Performance 148
8.4.1 Verification of Fuzzy with Experiment 152
8.5 Intelligent EMA-CVT System 153
8.6 Results and Discussion 156
8.6.1 EMA-CVT Parameters 156
8.7 Conclusion 157

Chapter 9: Energy Independent Electric Vehicle

9.1 Introduction 160
9.1.1 Vehicular Clean Energy Technology 162
9.2 Vehicle Nanobattery Technology 163
9.2.1 Epoxy Resins 164
9.2.2 Synthesis of Epoxy Resins 165
9.2.3 Characterization of Epoxy Resins 165
9.2.4 Thermal and Electric Conductivity of Epoxy Resins 168
9.3 CuO Filler ER Electrolyte 172
9.3.1 Synthesis of CuO ER 173
9.3.2 Characterization of CuO filler ER Electrolyte 177
9.3.3 Thermal Conductivity of CuO filler ER 180
9.3.4 Electric Conductivity of CuO filler ER 180
9.4 ZnO Filler ER Composite Vehicle Body 182
9.4.1 Synthesis of ZnO filler ER Solid Electrolyte 183
9.4.2 Characterization for ZnO filler ER 184
Chapter 9: Properties of ZnO

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.3</td>
<td>Thermal Conductivity of ZnO</td>
<td>185</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Electric Conductivity of ZnO</td>
<td>189</td>
</tr>
<tr>
<td>9.5</td>
<td>Structural Body for EV Body</td>
<td>193</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusion</td>
<td>195</td>
</tr>
</tbody>
</table>

Chapter 10: Lithium Battery Recycling

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>196</td>
</tr>
<tr>
<td>10.2</td>
<td>Materials and Methods</td>
<td>200</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Recycling and Disposal</td>
<td>200</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Leaching Process</td>
<td>200</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Physical Separation</td>
<td>202</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Electrolysis</td>
<td>203</td>
</tr>
<tr>
<td>10.3</td>
<td>Emissions Estimation</td>
<td>204</td>
</tr>
<tr>
<td>10.4</td>
<td>Results and Discussion</td>
<td>207</td>
</tr>
<tr>
<td>10.5</td>
<td>Economic Benefit of Recycling</td>
<td>211</td>
</tr>
<tr>
<td>10.6</td>
<td>Environmental Benefit of Recycling</td>
<td>213</td>
</tr>
<tr>
<td>10.7</td>
<td>Disposal System</td>
<td>215</td>
</tr>
<tr>
<td>10.8</td>
<td>Conclusion</td>
<td>216</td>
</tr>
</tbody>
</table>

Chapter 11: Policy of Green Transportation System Initiation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>218</td>
</tr>
<tr>
<td>11.2</td>
<td>Transportation Sector in Malaysia</td>
<td>219</td>
</tr>
<tr>
<td>11.3</td>
<td>Transportation Policy in Malaysia</td>
<td>223</td>
</tr>
<tr>
<td>11.4</td>
<td>Lithium Used Battery Recycling Policy</td>
<td>226</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusion</td>
<td>229</td>
</tr>
</tbody>
</table>

References
Glossary
Index
GREEN TRANSPORTATION SYSTEM

Environmental sustainability is largely measured by the transportation system. Green transportation revolves the efficient and effective use of resources, makes the low carbon and healthier environment for the nation by reducing the greenhouse gas emission. Promising innovative technologies could be the ultimate solution, but innovation comes to fruition if society plays a crucial role in the development of electric vehicle focused on decarbonised transport. Developing effective and affordable policies to ensure the introduction of low carbon technologies in line with political aspirations requires an understanding of how markets work to save fuel. Green Transportation System, First Edition, gives aspiring and practicing engineers a fundamental understanding of technologies for electric vehicle design and development that meet the national goal of environmental sustainability. Green Transportation System presents the basic of design, components selection and sizing, system integrations of electric vehicle development, the utilizing battery recycling and policy for green transportation system initiation. This edition would receive a wide assessment at the system level for electric vehicles. The authors bring this new edition “Green Transport System” to a new level, significantly expanding the possibilities of designing and developing electric transport while maintaining an integrated systems approach. This publication is presented as a resource for practising engineers and graduate students interested in the latest developments in electric transport.

ATAUR RAHMAN, obtained a Bachelor of Science (Mechanical Engineering) from the Chittagong University of Engineering and Technology (CUET), Bangladesh in 1991. He started his career as an Assistant Engineer at the Bangladesh Machines Tools Factory, Gazipur, Dhaka, Bangladesh in 1992 and later he was appointed as an engineer in 1994. He was appointed as a maintenance engineer at STEADTLER Germany-Malaysia from 1996-1998. He obtained a Master of Business Administration (Techno-Entrepreneurship) from the University Technology Malaysia (UTM) in 2000, Master of Engineering (Automotive) from UTM in 2001 and Degree of Doctor of Philosophy in Engineering [Bio-Production Machinery (Automotive Engineering)] from the University Putra Malaysia (UPM) in 2005. He was appointed as a Visiting Fellow for “Designing Automation System for Off-road Vehicle” at the Mechanical Engineering Laboratory, The University of Tokyo, Japan for 2005-2006. Later, he was appointed as an Assistant Professor at the Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) in 2006. Later he was promoted by IIUM for the post of Associate Professor in 2010 and Professor in 2014. He was appointed team leader of the “IIUM Smart Mobility” project by the Department of Mechanical Engineering of IIUM for the Proton Green Mobility Challenge (PGMC) 2012 for “Designing Electric Vehicle” and competing with the top 10 universities in Malaysia. His team earned the Overall Championship Award and 1st position for the both of fastest and farthest distance traveled. He is Chairman of the IIUM Centre for Excellence of Electric Mobility (ICEM).

RAFIA AFROZ, PhD is an Assoc. Professor, Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (IIUM) since 2008. She was also appointed as Senior Lecturer in Universiti Malaysia Sarawak in 2007. She received the JSPS Post-Doctoral Fellowship from the University of Tokyo, Japan in 2005. She has published more than 30 articles in journals and proceedings. Recently, she authored “The Peat Swamp: productivity, traficability and mechanization” which was published by Nova Science Publisher. Her areas of research interest is environmental valuation, waste management, input output analysis and climate change.

ABDUL HASSAN JAAFAR obtained his B.Sc. in Mechatronics Engineering and M.Sc. in Automotive Engineering from the International Islamic University Malaysia. He started his career as a process engineer at Ain Medicare, a pharmaceutical company in Kelantan, in 2010 and later was appointed as a Production Executive in 2013. He is currently working as a research officer IIUM while completing his PhD. His research interests include green transportation, fast charging systems, continuously variable transmission system, electric vehicles and intelligent systems.