Influences of laterite soil towards physico-chemical properties and heavy metals concentration in urban lake quality index

By: Othman, R (Othman, Rashidi)1, Sulaiman, WSHW (Sulaiman, Wan Syilrah Hanisah Wan)1, 2, Baharuddin, ZM (Baharuddin, Zainal Mukrin)1, Mahamod, LH (Mahamod, Lukman Hakim)1, 2; Hashim, KSHY (Hashim, Khairus Syakirin Has-Yun)1, 2

DESLINATION AND WATER TREATMENT
Volume: 163 Pages: 398-403
DOI: 10.5004/dwt.2019.2-228
Published: SEP 2019
Document Type: Article
View Journal Impact

Abstract
The soil is a transmitted agent of water run-off to the water body. Variety of soil type in Malaysia has contributed to the difference of soil properties dissolved in the water and the concern of soil problem in Malaysia involving from laterite, sandy, acid sulfate and organic soil type. Soil properties are one of the subjects of impacting the hydrological composition through transportation of physico-chemical properties that bring all compound result on water quality. Thus, this research aimed to identify the influences of laterite soil towards physico-chemical properties and heavy metals concentration in an urban lake. The study was conducted at 10 site studies located at the laterite soil area by evaluating physico-chemical properties and heavy metals concentrations by using inductively coupled plasma mass spectrometry. The results established the significant physico-chemical and heavy metal variables that strongly associated with laterite soil urban lake are high value in biological oxygen demand (62.4 mg/L), chemicals oxygen demand (15.87 mg/L), NH3-N (0.58 mg/L), total suspended solids (59.27 mg/L), slightly acidic of pH (6.62) and for heavy metals three elements found dominants in water samples such as Fe (0.49 mg/L), Al (0.24 mg/L) and Mn (0.05 mg/L). The laterite soil samples were dominated by clay (36.1%) whereas the composition of heavy metals concentration was found high in Fe (676.25 mg/L), Al (563.13 mg/L), and Mn (1.82 mg/L). The significant outcome of this study can be used as key tools indicator for monitoring urban lakes status and indices.

Keywords
Author Keywords: Highly weathered soil; Water quality index; Heavy metals contaminant; Urban lake status
KeyWord Plus: MANAGEMENT

Author Information
Reprint Address: Othman, R (reprint author)

Addresses:

E-mail Addresses: rashidi@iium.edu.my

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Islamic University Malaysia (IIUM)</td>
<td></td>
</tr>
<tr>
<td>Ministry of Higher Education (MOHE) Malaysia</td>
<td>MOHE 18-001-0001</td>
</tr>
</tbody>
</table>

Publisher
DESALINATION PUBL, 36 WALCOTT VALLEY DRIVE, HOPKINTON, MA 01748 USA
<table>
<thead>
<tr>
<th>Cited References: 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showing 18 of 18 View All in Cited References page</td>
</tr>
</tbody>
</table>

1. **Study of water quality and heavy metals in soil & water of ex-mining area Bestari Jaya, Peninsular Malaysia**
 By: Ashraf, M. A.; Maah, M. J.; Yusoff, I. B.
 Times Cited: 1

2. **Title: [not available]**
 By: Boyd, C. E.
 Water Quality an Introduction Published: 2000
 Publisher: Kluwer Academic
 Times Cited: 90

3. **Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS)**
 By: Cilli, Harun; Es, Cigdem
 ENVIRONMENTAL MONITORING AND ASSESSMENT Volume: 185 Issue: 3 Pages: 2745-2753 Published: MAR 2013
 Times Cited: 16

4. **Title: [not available]**
 By: Dent, D.
 Acid Sulphate Soil: A Baseline for Research and Development Published: 1986
 Publisher: International Institute for Land Reclamation and Improvement, The Netherlands
 Times Cited: 1

5. **Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application**
 By: Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; et al.
 SOLID EARTH Volume: 7 Issue: 2 Pages: 367-374 Published: 2016
 Times Cited: 7

6. **Research Advances in Bioremediation of Soils and Groundwater Using Plant-Based Systems: A Case for Enlarging and Updating Information and Knowledge in Environmental Pollution Management in Developing Countries**
 By: Erakhrumen, A. A.
 Biomanagement of Metal-Contaminated Soils Pages: 143-166 Published: 2011
 Publisher: Springer, Netherlands
 Times Cited: 2

7. **Physiographic Implications of Laterite in West Malaysia**
 By: Eyles, R. J.
 BULLETIN Volume: 3 Pages: 1-7 Published: 1970
 Publisher: Geological Society of Malaysia
 Times Cited: 1

8. **Title: [not available]**
 By: Hooda, P. S.
 Trace Elements in Soil Published: 2010
 Publisher: John Wiley and Sons Ltd., Publications, UK
 Times Cited: 9

9. **Water quality index: an indicator of surface water pollution in eastern part of Peninsular Malaysia**
 By: Hossain, M.A.; Sujaul, I.M.; Nasly, M.A.
 Res J Recent Sci Volume: 2 Pages: 10-17 Published: 2013
 Times Cited: 9

10. **SUSTAINABLE RIVER WATER QUALITY MANAGEMENT IN MALAYSIA**
 Times Cited: 16