Microbial hydrolytic enzymes: In silico studies between polar and tropical regions

By: Abd Latip, MA (Abd Latip, Muhammad Asyraf)[1]; Hamid, AAA (Hamid, Azzer Azzar Abdul)[2]; Nordin, NFH (Nordin, Noor Faizul Hadiry)[3]

POLAR SCIENCE
Volume: 20 Pages: 9-18 Part: 1 Special Issue: SI
DOI: 10.1016/j.polar.2019.04.003
Published: JUN 2019
Document Type: Article; Proceedings Paper

Conference
Conference: 7th Malaysian International Seminar on Antarctica (MISA) - Connectivity between Polar and Equatorial Climate and Biosphere - From the Poles to the Tropics
Location: Kuala Terengganu, MALAYSIA
Date: AUG 15-17, 2017

Abstract
Enzyme is important as biocatalyst for industrial and biotechnological applications. Cold active enzymes have showed many advantages compare to mesophilic enzymes. Their cold active and thermolabile characteristics have shown potential benefits in many industries. In silico characterization of hydrolytic enzymes originated from polar and tropical regions was conducted. Amino acid sequences and molecular structures of mesophilic and psychrophilic bacterial enzyme homologues were compared thoroughly. Amino acid sequences from these two homologs do not showed any extraordinary differences. Overall, protein folds were highly similar when psychrophilic homologies were matched with mesophilic homologies. Active site residues located in catalytic domain of both psychrophilic and mesophilic enzymes were highly conserved. Thus, the hydrolytic mechanisms of these cold active enzymes still remain similar to mesophilic enzymes. However, the differences were indicated between these two enzymes at the substrate-binding sites. Cold active enzymes showed unique loop conformations and smaller side chains at the entrances. These characteristics provided larger active site of the enzymes. Larger entrance of active site was expected to stipulate substrates binding and products exiting with lower energy consumption. This part of the enzymes indicated one of the important features of cold active enzyme to work efficiently at lower temperature. Based on this in silico study, cold active enzymes have much more advantages compared to the mesophilic enzymes that made them valuable to be further researched and applied at industrial level.

Keywords
Author Keywords: Psychrophiles; Cold active enzyme; In silico; Loop
Keyword Plus: ALPHA-AMYLASE; ALKALINE-PHOSPHATASE; BETA-GALACTOSIDASE; CRYSTAL-STRUCTURE; COLD-ADAPTATION; BIOTECHNOLOGICAL APPLICATIONS; ALTEROMONAS-HALOPLANCCTS; STRUCTURAL ANALYSIS; PROTEIN; INHIBITION

Author Information
Reprint Address: Nordin, NFH (reprint author)

Addresses:
[1] Int Islamic Univ Malaysia, Int Inst Halal Res & Training INHART, Jalan Gombak, Kuala Lumpur 50728, Malaysia
[3] Int Islamic Univ Malaysia, Int Inst Halal Res & Training INHART, Jalan Gombak, Kuala Lumpur 50728, Malaysia

Email Addresses: faizul@ium.edu.my

Funding
1. **Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanktis in its native form and complexed with an inhibitor**
 By: Aghajari, N; Feller, G; Gerday, C; et al.
 PROTEIN SCIENCE Volume: 7 Issue: 3 Pages: 564-572 Published: MAR 1998
 Times Cited: 143

2. **Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases**
 By: Aghajari, N; Van Petegem, F; Villereal, V; et al.
 PROTEINS: STRUCTURE FUNCTION AND BIOINFORMATICS Volume: 50 Issue: 4 Pages: 636-647 Published: MAR 1 2003
 Times Cited: 83

3. **Structures of the psychrophilic Alteromonas haloplanktis alpha-amylase give insights into cold adaptation at a molecular level**
 By: Aghajari, N; Feller, G; Gerday, C; et al.
 STRUCTURE Volume: 6 Issue: 12 Pages: 1503-1516 Published: DEC 15 1998
 Times Cited: 164

4. **List of Enzymes October 2009**
 Group Author(s): AMFEP
 LIST ENZ OCT 2009 Published: 2009
 Available from updated 15 May 2014
 Times Cited: 3

5. **Induced-Fit Mechanism in Class I Terpene Cyclases**
 By: Baer, Philipp; Rabe, Patrick; Fischer, Katrin; et al.
 ANGEWANDECHEMIE-INTERNATIONAL EDITION Volume: 53 Issue: 29 Pages: 7652-7656 Published: JUL 14 2014
 Times Cited: 67

6. **The interdigitating loop of the enolase superfamily as a specificity binding determinant or 'flying buttress'**
 By: Bearne, Stephen L.
 BIOCHIMICA ET BIOPHYSICA ACTA: PROTEINS AND PROTEOMICS Volume: 1865 Issue: 5 Pages: 619-630 Published: MAY 2017
 Times Cited: 9

7. **The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization**
 By: Borg, Mohamed Ali; Boudebouze, Samira; Aghajari, Nushin; et al.
 APPLIED MICROBIOLOGY AND BIOTECHNOLOGY Volume: 98 Issue: 13 Pages: 5937-5947 Published: JUL 2014
 Times Cited: 15

8. **Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes**
 By: Brzezowski, AM; Lawson, DM; Turkenburg, JP; et al.
 BIOCHEMISTRY Volume: 39 Issue: 31 Pages: 9099-9107 Published: AUG 8 2000
 Times Cited: 110

9. **Study on Cold-Active and Acidophilic Cellulase (CMCase) from a novel psychrotrophic isolat Bacillus sp. K-11,**
 By: Cal, Y; Valipour, E; Arikan, B.
 Times Cited: 2
10. **Biotechnological uses of enzymes from psychrophiles**

 By: Cavicchioli, R.; Charlton, T.; Ertan, H.; et al.

 MICROBIAL BIOTECHNOLOGY Volume: 4 Issue: 4 Special Issue: SI Pages: 449-460 Published: JUL 2011

 Times Cited: 137

11. **Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis**

 By: Chen, Shicheng; Kaufman, Michael G; Miazgowicz, Kerri L; et al.

 BIORESOURCE TECHNOLOGY Volume: 128 Pages: 145-155 Published: JAN 2013

 Times Cited: 26

12. **Thermal Bifunctionality of Bacterial Phenylalanine Aminomutase and Ammonia Lyase Enzymes**

 By: Chesters, Christopher; Wilding, Matthew; Goodall, Mark; et al.

 ANGEWANDTE CHEMIE INTERNATIONAL EDITION Volume: 51 Issue: 18 Pages: 4344-4348 Published: 2012

 Times Cited: 21

13. **Asymmetric Anchoring Is Required for Efficient Omega-Loop Opening and Closing in Cytosolic Phosphoenolpyruvate Carboxykinase**

 By: Cuil, Danica S.; Broom, Aron; Mcleod, Matthew J; et al.

 BIOCHEMISTRY Volume: 56 Issue: 15 Pages: 2106-2115 Published: APR 18 2017

 Times Cited: 2

14. **Structure of the Bacillus agaradherans family 5 endoglucanase at 1.6 angstrom and its cellobiose complex at 2.0 angstrom resolution**

 By: Davies, G.J; Dauter; M; Brazowski, AM et al.

 BIOCHEMISTRY Volume: 37 Issue: 7 Pages: 1926-1932 Published: FEB 17 1998

 Times Cited: 79

15. **Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris**

 By: de Queiroz Brito Cunha, Carolina Candida; Gama, Aline Rodrigues; Cintra, Lorena Cardoso; et al.

 PLOS ONE Volume: 13 Issue: 2 Article Number: e0192996 Published: FEB 26 2018

16. **Title: [not available]**

 By: Delano, WL.

 The PyMOL molecular graphics system. Version 1 Published: 2002

citeulike article-id=240061

Publisher: Schrodinger LLC

URL: http://www.pymol.org

Times Cited: 9,140

17. **A novel extracellular cold-active esterase of Pseudomonas sp TB11 from glacier No.1: Differential induction, purification and characterisation**

 By: Dong, Juan; Zha, Wei; Gasmalla, Mohammed A. A.; et al.

 JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC Volume: 121 Pages: 53-63 Published: NOV 2015

 Times Cited: 6

18. **Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of beta-galactosidase (Escherichia coli)**

 By: Dugdale, Megan L; Dymianiw, Dayna L; Minhas, Bhawanjet K; et al.

 BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELULIAIRE Volume: 88 Issue: 5 Pages: 861-869 Published: OCT 2010

 Times Cited: 19

19. **Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris**

 By: Ersöz, Fatma; Inan, Mehmet

 PROTEIN EXPRESSION AND PURIFICATION Volume: 154 Pages: 126-133 Published: FEB 2019

 Times Cited: 1

20. **Preparation and characterization of gellan gum microspheres containing a cold-adapted beta-galactosidase from Rahnella sp R3**

 By: Fan, Yuting; Yi, Jiang; Hua, Xiao; et al.

 CARBOHYDRATE POLYMERS Volume: 162 Pages: 10-15 Published: APR 15 2017

 Times Cited: 9

21. **Molecular adaptations to cold in psychrophilic enzymes**

 By: Feller, G

 CELLULAR AND MOLECULAR LIFE SCIENCES Volume: 60 Issue: 4 Pages: 648-662 Published: APR 2003

 Times Cited: 146

22. **Enzyme function at low temperatures in psychrophiles**

 By: Feller, G.

 Protein Adaptation in Extremophiles Pages: 35-69 Published: 2008

 Times Cited: 12
23. Psychrophilic Enzymes: From Folding to Function and Biotechnology
 By: Feller, Georges
 SCIENTIFICA Article Number: 512840 Published: 2013
 Times Cited: 108

24. InterPro in 2017—beyond protein family and domain annotations
 By: Finn, Robert D.; Attwood, Teresa K.; Babbitt, Patricia C.; et al.
 NUCLEIC ACIDS RESEARCH Volume: 45 Issue: D1 Pages: D190-D199 Published: JAN 4 2017
 Times Cited: 570

25. Parameterization of the Annual Surface Temperature and Mass Balance of Antarctica
 By: Fortuin, J. P. F.; Oerlemans, J.
 Times Cited: 99

26. Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes
 By: Gianese, G; Bassa, F; Pascarella, S
 PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS Volume: 47 Issue: 2 Pages: 236-249 Published: MAY 1 2002
 Times Cited: 112

27. Recombinant Production and Characterization of a Highly Active Alkaline Phosphatase from Marine Bacterium Cobetia marina
 By: Golotin, Vasily; Balabanova, Larissa; Likhatskaya, Galina; et al.
 MARINE BIOTECHNOLOGY Volume: 17 Issue: 2 Pages: 130-143 Published: APR 2015
 Times Cited: 19

28. Isolation and Identification of a Novel, Cold Active Lipase Producing Psychrophilic Bacterium Pseudomonas vancouverensis
 By: Gupta, G. N; Prakash, V.
 Trend Bioci. Volume: 22 Published: 2014
 Times Cited: 1

29. How Lipase Technology Contributes to Evolution of Biodiesel Production Using Multiple Feedstocks
 By: Hama, Shinji; Noda, Hideo; Kondo, Akihiko
 CURRENT OPINION IN BIOTECHNOLOGY Volume: 50 Pages: 57-64 Published: APR 2018
 Times Cited: 24

30. Crystal Structure of a Complex Between Pseudomonas aeruginosa Alkaline Protease and Its Cognate Inhibitor—Inhibition by a Zinc-NH2 Coordinative Bond
 By: Hege, T; Feltzer, RE; Gray, RD; et al.
 JOURNAL OF BIOLOGICAL CHEMISTRY Volume: 276 Issue: 37 Pages: 35087-35092 Published: SEP 14 2001
 Times Cited: 39

Showing 30 of 78 View All in Cited References page