AN Overview of Radioisotopels Study in Water Pollution
- Abstract
- Keywords
- References
-
Abstract
Radioisotopes can be defined as the radioactive isotopes of an element. They refer to the atoms that contain an unstable combination of neutrons and protons. The combination can occur naturally or by altering the atoms. Nowadays, radioactive materials have become major contributing pollutants for a lot of cases of disability and mortality in all over the world. They have become a serious fear of the human, environment, and aquatic organism, although they are exposed to low levels of exposure. Therefore, to overcome these problems, the effective and easier prevention strategies should be taken and encouraged by all related parties such as industries, residents, and government. Radioisotope becomes as an essential part in medical, radiography and other fields of research including the environmental study. One of the applications is they can be used as the indicators in order to identify the pollutant sources. This method can be applied in surface water around industrial area and non-industrial area. As the example, the standard limit concentration of Uranium is 10ppb while for Thorium is 0.50 ppb. The study regarding radioisotope usually uses analytical instruments, for example, Inductively Coupled-Plasma Mass Spectrometry (ICP-MS) and X-Ray Fluorescence (XRF). Basically, this paper will give ideas on overview of radioisotope study and reference for acquiring a better quality of surface water in the present and future by using the environmental forensic study application.
-
Keywords
Radioactive Materials; Radioisotope Tracing; Pollutant Sources
-
References
[1]. Akyuz, T., Erkan, B.M., Akyuz, S., & Bassari, A. (2001). Radioisotope excited X-ray Fluorescence analysis of Asellus Aquatics (Crustacea: Isopoda) from Istanbul as an indicator of environmental metal pollution. Journal of Radioanalytical and Nuclear Chemistry, 249(3): 649-651.
[2]. Calkins, G.D. (1952). Radioactive Method of Analysis. Ohio Journal of Science, 52(3):151-160.
[3]. Central Lab University Malaysia Pahang. Access on 20 April 2017. Internet: http://centrallab.ump.edu.my/index.php/en/)
[4]. Clauer, N., (2013). The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Journal Chem Geol, 354: 163-185.
[5]. Deodhar, A.S., Ansari, M.A., Sharma, S., Jacob, N., Kumar, U.S., & Singh, G. (2014). Isotope Techniques for Water Resources Management. 337: 29-35.
[6]. Dhara, S., & Misra, N. L. (2011). Application of total reflection Xray fluorescence spectrometry for trace elemental analysis of rainwater. Pramana-Journal Physics, 76(2): 361-366.
[7]. Dolhanczuk, S.A., (2015). The use of Pb-210 Isotope as an indicator of pollutants‘ migration in the environment, Ecol Chem Eng S, 22 (3): 379-388.
[8]. Dolhanczuk, S.A., Ziembi, Z., & Kusza, G. ( 2015). The use of statistical methods to describe the migration of radionuclides in the environment.
[9]. Dolhanczuk, A., Majcherczyk, T., Smuda, M., Ziembik, Z., & Waclawek, M. (2006). Spatial Cs-137 distribution in forest soil, 51(2): S69-S79.
[10]. Gunathilaka, P.A.D.H.N., Ranundeniya, R.M.N.S., Najim, M.M.M., & Seneviratne, S., (2011). A determination of air pollution in Colombo and Kurunegala, Sri Lanka, using energy dispersive X-Ray Fluorescence Spectrometry on Heterodermia Speciosa. Journal Tubitak, 35:439-446.
[11]. Ihsanullah (1992). ICP-MS as the advantageous analytical technique for the determination of long-lived 99Tc in the environment. 3-15.
[12]. Jacqueline Q. M., Christian R., Fengxiang X. H., and Paul B.T. (2014). Rapid screening of heavy metals and trace elements in environmental samples using portable Xray fluorescence spectrometer, A comparative study. Journal of Water Air and Soil pollution. 225:2169, 110.
[13]. Joris, O., & Street, M. (2008). At the end of the 14C timescale the middle to the upper paleolithic record of western Eurasia. Journal Human evolution, 55(5):782-802.
[14]. Kubica, B., Skiba, S., Drewnik, M., Stobinski, M., Kubica, M., & Golas, J. (2010). Radionuclides Cs-137 and K-40 in the soils of the Tatra National Park (TPN, Poland). 55(3):377-386.
[15]. Kubica, B., Szarlowicz, K., Stobinski, M., Skiba, S., Reczynski, W., & Golas, J. (2014). Concentrations of Cs-137 and K-40 radionuclides and some heavy metals in soil samples from the eastern part of the Main Ridge of the Flysch Carpathians. Journal of Radioanalytical Nuclear Chemistry, 299(3):1313-1320.
[16]. Kelly, R.P. & Moran, S.B., (2002). Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets, 47(6):1796-1807.
[17]. Kolar, T., & Rybnicek, M. (2011). Dendrochronological and radiocarbon dating of subfossil wood from the Morava River Basin, 38(2): 155-161.
[18]. Lecroart, P., Maire, O., Schmidt, S., Gremare, A., Abrahams, P.W., & Meysman, F.J.R. (2010). Bioturbation, short-lived radioisotopes, and the tracer-dependence of diffusion coefficients, 74(21):6049-6063.
[19]. Medich, D.C., Abayomi, K., Boudreau, B.P., & Meysman, F.J.R. (2006). Steady state tracer dynamics in a lattice-automaton model of bioturbation, 70(23):5855-5867.
[20]. Mola, M., Palomo, M., Penalver, A., Aquilar, C., & Borrull, F. (2013). Radionuclides in Biota Collected Near a Dicalcium Phosphate Plant, Southern Catalonia, Spain. Journal of Radioanalytical and Nuclear Chemistry, 298(3), 2017-2024.
[21]. Paschoa, A.S., Baptista, G.B., Montenegro, E.C., Miranda, A.C., & Sigaud, G.M., (1979). Radium-226 Concentrations in the Hydrographic basins near Uranium Mining and Milling in Brazil. Proceedings of Mid-Year Tropical Symposium, Low-Level Radioactive Waste Management, 337-343.
[22]. Patrut, A., Von Reden, K.F., Van Pelt, R., Mayne, D.H., Lowy, D.A. & Margineanu, D. (2011). Age determination of large live trees with inner cavities: radiocarbon dating of Portland tree, a giant African Baobab, 68(5):993-1003.
[23]. Revenko, (2002). X-ray Spectrometry. Anatoly G., 313: 264-273.
[24]. Richter, D., Tostevin, G., Skrdla, P., & Davies, W. (2009). New radiometric ages for the early upper paleolithic type locality of Borneo-bohunice (Czech republic): Comparison of OSL, IRSL, TL, and 14C dating results. Journal of Archeological Science, 36(3):708-720.
[25]. Science Platform Baelgian Nuclear Research Centre. Access on 20 April 2017. Internet: http://science.sckcen.be/en/Services/Testing/Radiochemical)
[26]. Szabo, K.Z., Udvardi, B., Horvath, A., Bakacsi, Z., Pasztor, L., & Szabo, J. (2012). The cesium-137 concentration of soils in Pest Country, Hungary. Journal of Environmental Radioactivity, 110:38-45.
[27]. Terry, M., Steelman, K.L., Guilderson, T., Dering, P., & Rowe, M.W. (2006). Lower Pecos and Coahuila Peyote: new radiocarbon dates. Journal of Archeological Science, 33(7):1017-1021.
[28]. Uchinda, S., and Tagami, K. (2003). Mobility and bioavailability of technetium in rice paddy fields. World Maize Conference, Tucson, Japan.
[29]. Yusofff, A.H., Sabuti, A.A., & Mohamed, C.A.R. (2015). Natural Uranium and Thorium Isotopes in Sediment Cores Off Malaysian Ports. Ocean Science Journal, 50(2):403-412.
[30]. Yuan, C., Shi, J., He, B., Liu, J., Liang, L., Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30:769 –783.
[31]. Wahab, S. U. K., Shaibullah, S. H., Samah, M. A. A., & Aris, M. S. M. (2016). An Assessment of Surface Water Quality and Heavy Metals Involving the Radioactive Elements in Sungai Tunggak and Sungai Balok, Gebeng, Kuantan, Pahang: Comparison between The year 2014 and 2015. International Journal of Applied Chemistry, 12(1), 146-151.
[32]. Wahab, S. U. K., Shaibullah, S. H., Samah, M. A. A., & Aris, M. S. M. (2016). An Assessment of Surface Water Quality and Heavy Metals Involving the Rare Earth Elements in Sungai Tunggak and Sungai Balok, Gebeng, Kuantan, Pahang. Journal of Malaysian Critical Metals, 1: 11-23.
[33]. Zazzo, A. ,& Saliege, J.F.(2011). Radiocarbon dating of biological apatites: A review, 310(1-2):52-61.
-
View |
Download | Article ID: 14276 |
|