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ABSTRACT 

Nowadays Mini Aerial Vehicles (MAVs) are popular in many areas such as aerial 

photography, inspection, surveillance and search and rescue missions in complex and 

dangerous environments due to their low cost, small size, superior mobility, and hover 

capability.  Multifarious applications of MAVs inspire researchers to concentrate on 

different types of controllers like linear, nonlinear or learning-based. The attention of 

this work is to design a robust controller and to develop an accurate mathematical 

model of Quadrotor, a type of MAV as it behaves roughly in uncertain environments. 

Quadrotor is an under-actuated and highly nonlinear system with six degrees of 

freedom (DOF). The mathematical model of quadrotor is derived based on Newton-

Euler method that includes aerodynamic drag and moment that are sometimes 

overlooked in literatures. For higher precision modelling, model uncertainties are also 

included in the system. In addition, the kinematic model is derived utilizing Euler 

angles and Quaternion methods. Quaternion approach has the advantage of singularity 

free orientation while Euler angles are easy to visualize. This work investigates the 

performance of three different controllers which includes Proportional-Integral-

Derivative (PID), Linear Quadratic Regulator (LQR) and Model Predictive Control 

(MPC) based on several performance evaluation factors. PID offers fast response to the 

system comparing to other controllers although choosing proper gain is challenging for 

PID. However, it cannot handle directly under-actuated system and due to the fact, 

some states are required to be decoupled. LQR ensures fast response and can deal with 

Multiple Input Multiple Output (MIMO) system at the same time. The main drawback 

of the LQR controller is its incapability of dealing with steady-state error. Conversely, 

MPC has the functionalities of dealing with MIMO system with constraints and 

uncertainties while other controllers fail. The performance of the controllers are 

presented based on tracking accuracy using Root Mean Square Error (RMSE) method 

and control stability using control input norm method. MATLAB and Simulink 

environment is considered to carry out the simulations. Based on simulated 

experiments, it is found that MPC could track the trajectories more accurately with 

stable control effort comparing to PID controllers and LQR. 
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 خلاصة البحث

Abstract 
 ويرالتص لأغراض المناطق من العديد في (MAVs) المصغرة الهوائية المركبات انتشرت ، الحاضر الوقت في

 وصغر خفضةالمن تكلفتها بسبب والخطرة المعقدة البيئات في والإنقاذ البحث ومهام والمراقبة والتفتيش الجوي

 أنواع على يزللترك الباحثين MAVs من المتنوعة التطبيقات تلهم . التحليق على وقدرتها الفائقة وحركتها حجمها

 وحدة صميمت هو العمل هذا هدف . التعلم على القائمة أو الخطية غير أو الخطية مثل التحكم وحدات من مختلفة

 غير بيئات في عادة تستخدم MAV من نوع وهو ، Quadrotor من دقيق رياضي نموذج وتطوير قوية تحكم

 تم (DOF) .  الحرية من درجات ست مع بامتياز خطي وغيرسهل التحكم  غير نظام هو. Quadrotor محددة

 العزم و الهوائي السحب تشمل التي أويلر-نيوتن طريقة أساس على الدوران لرباعي الرياضي النموذج اشتقاق

 غير نماذج ضمينت يتم ، الدق عالي نموذج تصميم أجل من. السابقة الدراسات في أحيانًا امتجاهله يتم التي الهوائي

 وطرائق أويلر زوايا باستخدام الحركي النموذج اشتقاق يتم ، ذلك إلى بالإضافة . النظام في أيضًا محدودة

Q.Quaternionنهج يتميز Quaternion هذا سيدر. أويلر زوايا تصور يسهل بينما للخلية الحر التوجه بميزة 

 Linear و ، Proportional-Integral-Derivative (PID) تتضمن مختلفة تحكم وحدات ثلاث أداء العمل

QQuadratic Regulator (LQR)  و Model Predictive Control (MPC)  من العديد أساس على 

 اختيار أن نم الرغم على الأخرى التحكم وحدات مع مقارنة للنظام سريعة استجابة PID يقدم. الأداء تقييم عوامل

 مباشرة لمباشرا غير التشغيل نظام مع التعامل يمكن لا فإنه ، ذلك ومع PID. لـ تحديًا يمثل  الصحيحه المعاملات

 نظام عم تتعامل أن ويمكن السريعة الاستجابة LQR تضمن. فصلها من بد لا الحالات بعض  أن حقيقة وبسبب ،

 قدرته معد هو LQR التحكم لجهاز الرئيسي العيب . الوقت نفس في (MIMO) المتعدد للإخراج المتعدد الإدخال

 قيود وجود مع MIMO نظام مع التعامل وظائف MPC لدى ، العكس على..المستقر الخطأ مع التعامل على

 طريقة استخدامب التتبع دقة إلى استناداً التحكم وحدات أداء تقديم يتم. الأخرى التحكم وحدات تفشل بينما وشكوك

Root Mean Square Error (RMSE) يعتبر. التحكم إدخال معيار طريقة باستخدام التحكم ثبات و و 

MMATLAB وsSIMULINK أن تبين ، المحاكاة تجارب إلى استناداً. المحاكاة عمليات لتنفيذ بيئة MPC 

 .LQR و PID تحكم وحدات مع مقارنة مستقر تحكم جهد مع دقة أكثر بشكل المسارات تتبع يمكنها
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CHAPTER ONE 

INTRODUCTION 

1.1 OVERVIEW 

Unmanned Aerial Vehicles (UAVs) have achieved a great interest because of 

multifarious applications and the advancement of sensing and actuating technologies 

have expedited it more. Especially the interest is increasing among VTOLs (Vertical 

Take Off and Landing) that are mostly used for monitoring and exploration of any area. 

A quadrotor is a vehicle of four rotors with a cross linked structure and 

considered as a VTOL UAV. The body of a quadrotor normally contains a power 

source, some sensors (i.e. GPS, altitude sensor etc.) and controlling equipment (i.e. 

Arduino, Raspberry-P, APM, Naza etc.). The rotors mainly produce thrust and by 

varying, it can perform any sorts of movement of quadrotor such as pitch, roll, yaw and 

upward-downward. Noted that all the rotors can be independently operated using a 

controller.  

Quadrotor is a 6DOF and highly nonlinear system. Along with that, it also a 

coupled under-actuated system that has only four input to control six states at the same 

time. Moreover, in outdoor applications, it becomes more challenging in presence of 

uncertainty to the system. As a result, it is cardinal to develop a robust controller that 

can handle the uncertainty that influences the quadrotor performance.  

This work introduces two different orientation system, Euler angle and 

Quaternion to describe quadrotor kinematic model. Remarkably, quaternion orientation 

system draws attention because it ensures singularity-free flight in all situations unlike 

Euler angle (Fresk & Nikolakopoulos, 2013). Noted that most of the applications of 
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quadrotor can be performed using Euler angle orientation system and due to the reason, 

Euler angle orientation system is considered in this work as well. 

In this thesis, three commonly used controllers, PID, LQR and MPC have been 

investigated on quadrotor platform based on two performance evaluation factors, 

tracking accuracy and control effort efficiency. PID and LQR ensures fast response to 

the system while the controllers cannot deal with uncertainties to the system and offer 

the feature of constraints. Conversely, MPC is capable to deal model uncertainties with 

its predicting behaviour and offer constraints at both inputs and outputs. MPC responds 

slower than others do because its predicting feature requires high computation. 

However, it can be overcome nowadays using high computational processors. 

 MATLAB & Simulink environment has been used to investigate the 

performances of the controllers considering two trajectories, circular and helical with 

different environments. The goal of this work is to develop a quaternion based 

mathematical model and to design a robust controller that may assist the quadrotor to 

track the trajectories comparatively more accurately under different conditions with 

smooth movement. 

 

1.2 STATEMENT OF THE PROBLEM AND ITS SIGNIFICANCE 

Quadrotor is one of the most suitable platforms for inspection, surveillance and rescue 

mission in complex environment. Therefore, it must be capable to maintain its flight 

with higher precision in such an environment that is not free from disturbance. For 

indoor application, quadrotor does not need to face any uncertainty while outdoor 

applications are more uncertain and challenging sometimes.  

Moreover, stability and manoeuvrability is one of most complicated part for 

autonomous flight control because of its fast and agile movement with unknown 
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environment. During its fast movement, it may face singularity problem, also known as 

Gimbal lock. Therefore, a suitable orientation system is required to be developed that 

may resolve the singularity problem. However, the best fitted control system for 

quadrotor is still under development because every controller has some advantages and 

disadvantages. Balancing between these advantages and disadvantages widens the 

opportunity to work on different controllers. Necessarily based on the gravity of 

applications, a suitable controller is ought to be designed for quadrotor. Primarily, some 

features such as fast response from the system, design simplicity, working with multiple 

constraints at control inputs, disturbance rejection along with higher precision in 

tracking are mostly expected for the controllers of quadrotor. 

In this thesis, quaternion orientation system has been adopted in mathematical 

design to ensure singularity-free flight. Besides, three different controllers i.e. PID, 

LQR and MPC have been investigated because of their some special features as 

aforementioned. MATLAB/Simulink has been chosen in order to design and investigate 

the performance of the controllers. In order to evaluate the performance of the 

controllers, two evaluation parameters such as control effort efficiency and tracking 

accuracy have been considered during simulations. 

 

1.3 RESEARCH OBJECTIVES 

The study aimed to achieve the following objectives:  

1- To develop mathematical model considering both Euler angle and 

quaternion orientation. 

2- To design PID, LQR and MPC controllers for quadrotor based on 

mathematical model. 
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3- To investigate the performance of the controllers based on evaluation 

parameters. 

4- To choose and finalize the most suitable controller among the three 

controllers for quadrotor based on investigation. 

 

1.4 UNMANNED AERIAL VEHICLE 

Unmanned Aerial Vehicle (UAV), also known as drone or remotely piloted vehicle 

(RPV), is an aircraft that flies without on-board pilot. It can either be remotely 

controlled from another location (i.e. ground, space or another aircraft) or pre-

programmed with complete autonomy (ICAO, 2011). In another literature, from 

military aspect it is defined as a remotely operated vehicles or missiles that take flight 

for long duration at high altitudes or short duration at low altitudes and equipped with 

necessary sensors for surveillance (Amir & Weiss, 2003).  

American Institute of Aeronautics and Astronautics (AIAA) defines that UAV 

is an aircraft that is independent of human pilot and operated by an onboard flight 

controller or a remote flight controller. So, it covers all sorts of aerial vehicle that is pre-

programmed for flight and can be operated without any human interference (Rosenberg, 

2009).  

 

1.5 HISTORY OF UAV 

Tracing back to the history, UAV was introduced by Austrian Armies for the first time 

to the world in Venice at August 22, 1849. They launched unmanned balloons of 23 

feet diameter from Austrian ship named “Volcano” with explosives to attack Italy 

(Twain, 2016).  
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1.5.1 Historical development in Military operations 

For the first time in the history, during World War I (WWI), pilotless aerial vehicle, as 

a counterpart was guided to the target, against naval torpedo although it crashed in 

United States after a while. After 2 years, in September 12, 1916, Hewitt-Sperry 

Automatic Airplane, also known as “Flying Bomb” is considered another one of the 

earliest UAV took some successful flights as a prototype (Ahmad et al., 2013). In 1918, 

around twenty pilot-independent aircrafts namely “Bugs” were made test flight 

successfully to validate the idea of Automatic Airplane  that was developed by Sperry 

Gyroscope Company (Yanushevsky, 2007). 

 

 

Figure 1.1 Kettering Bug (Schroer, 2003) 

 

About a decade later of WWI, between 1930s and 1940s, Royal Air Force 

perfected a manned aircraft, Fairey Scout 111F and transformed it into remotely radio-

controlled aircraft, “The Queen Bee”, that is considered as the first target drone in the 

history (Marshall et al., 2016). During World War II (WWII), at the end of October, 

1944, U.S. demonstrated another remotely controlled aircraft, B-17 that was damaged 

the submarines of Germany devastatingly (Keane & Carr, 2013). On the same year, a 
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couple of months later, U.S. Navy sent a troop of four TDR-1 drones which were loaded 

with 2000 lb bombs to attack on Japan (Lee, 2013). 

After losing Vietnam War, U.S. fall in financial problems that made an impact 

on the research fund of UAV and it continued for almost a decade (Keane & Carr, 2013). 

However, after overcoming the financial crisis, U.S. started to work with Israel jointly 

on the development of small and cost-effective, motorcycle-powered engines UAVs 

that were equipped with video camera. Finally, Israel developed some new UAVs and 

used against Syria and Lebanon in 1982 (Karakoc et al., 2016; Rosenberg, 2009). Later 

on during 1990-1991, in Persian Gulf War, U.S. operated more than 300 flight 

operations of snowmobile powered engine drone with 17 feet wingspan, Pioneer, that 

were jointly developed by Israel and U.S. In Second Persian Gulf War, it was chosen 

as one of the primary weapon that took operational flight in Bosnia, Haiti and Somalia 

as well (Keane & Carr, 2013; Nonami, 2007) 

 

 

Figure 1.2 History of Military UAVs (Team, 2006) 
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1.5.2 Historical development in civil operations 

Historically, the applications of UAVs were not restricted under only military 

operations rather civil operations though it was very well-known for military operations 

before. For civil operations, PA-30 Twin Comanche was debuted by NASA in 1967 

that was controlled by ground station. During its test flight, a pilot was reserved on 

board to avoid any unexpected occurrence though the purpose was to fly it without pilot 

onboard (Koziol Jr, 1971). Later on, NASA initiated two different research programs 

such as Highly Maneuverable Aircraft Technology (HiMAT) and Drones for 

Aerodynamic and Structural Testing (DAST) program for civil operation (ElKholy, 

2014; Murrow & Eckstrom, 1979). Another program, namely Environmental Research 

Aircraft and Sensor Technology (ERAST) was also initiated by NASA during 1990’s. 

Interestingly, ERAST was developed to research, design and develop the low speed and 

inexpensive UAVs with the capability of long endurance at 60000 ft altitude. NASA 

claimed that it was a success of a long period effort for the development of aeronautical 

technologies and remotely controlled aircrafts of low cruise speed with long endurance. 

It was capable to analyze the environmental data for the assessment of climate changing 

and weather forecasting at the same time ("NASA Armstrong Fact Sheet: Altus II," 

2014).  

Altus II aircraft was developed by General Atomics Aeronautical Systems, Inc., 

under ERAST program as a variant of MQ-1 Predator that made the first flight in 1996. 

The flight was operated at 37000ft altitude with more than 26 hours by its single-stage 

turbocharger rear mounted engine. In the meanwhile, in 1990s, AeroVironment, Inc. 

was able to develop two solar powered UAVs, Helios and Pathfinder under their well-

known EARST program. The main objective of the development of Helios and 

Pathfinders were to ensure the flight 100,000 ft with an endurance of 24 hours without 
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any help of rudder (Gibbs, 2014a, 2014b). Surprisingly, the EARST program was 

terminated in 2003 although it could accomplish some successful projects (Wolfe, 

2003).   

 

 

Figure 1.3 Altus II ("NASA Armstrong Fact Sheet: Altus II," 2014) 

 

 

 

Figure 1.4 Helios  (Conner, 2017) 

 

1.6 APPLICATIONS OF UAV 

Multifarious applications of UAVs are making itself more demanding and motivating 

researchers to find new application of UAVs. Mostly, UAVs are chosen as an alternative 

to perform some difficult, risky and dirty jobs instead. However, plethora of 
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applications of UAVs have been introduced in defense and military purposes and a 

plenty of research funds are also being invested still for some more advanced 

applications of UAVs in these fields. In earlier history, military UAVs were mostly used 

for surveillance, reconnaissance and small strike while the recent UAVs have the 

capability to perform some more advanced and complex operation such as target 

detection and destruction, air combat, aerial transportation, anti-surface ship warfare, 

mine detection and defusing and so on. Apart from that, the applications of UAVs in 

civilian sector is getting wider and it is highly expected that in nearest future, UAVs 

will perform some sophisticated applications that were never expected before. Some 

common and potential civil and commercial applications of UAVs are: 

1.6.1 Earth Science  

UAVs can be used to observe any terrain or place from any side that helps to understand 

the condition precisely.  Some similar missions are as follows (Team, 2006; Wegener 

et al., 2004): 

i. Measurement of the deformation of earth’s crust because of natural disasters 

like landslides, earthquake and volcanoes 

ii. To have a study of transformations of gases and aerosols in 

cloud 

iii. Observing the ozone chemistry in stratosphere 

iv. Pollution of troposphere 

v. Measurements of water vapor and total water 

vi. Observations on coastal ocean 

vii. Understanding about carbon cycle dynamics 

viii. O2, CO2 and other gases measurements 
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ix. Studying on the breakup of glacier and ice sheet and 

measurement of ice sheet thickness. 

1.6.2 Border patrol and security  

Surveillance on border is a national security concern.  Nowadays UAVs are used for 

patrolling and surveillances on border to identify and intercept any intruder or smuggler 

to trespass the border (Bolkcom, 2004; Girard et al., 2004; Haddal & Gertler, 2010; 

Sözen, 2014). 

 

1.6.3 Search and rescue  

UAVs equipped with camera and microphone, can give information about the survivors 

after natural disasters and any crashes (Waharte & Trigoni, 2010).  

 

Figure 1.5 UAV in rescue mission (Cuthbertson, 2016) 

 

1.6.4 Enforcement of law  

UAVs are currently being used for some police works like chasing or traffic control in 

United States and Canada (Feng et al., 2013; Murphy & Cycon, 1999). 
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1.6.5 Industrial inspection and surveillance  

Interestingly, in different industrial applications like gas and oil pipeline and nuclear 

reactor monitoring to ensure safety, security and maintenance, UAV is considered as a 

hassle free and more accurate alternative (Boudergui et al., 2011; Hausamann et al., 

2005). 

1.6.6 Research  

UAVs play a very important role in research work and scientific projects as well. To 

observe any object from different angles without jerk, UAVs offer an amazing platform. 

Interestingly, some UAVs with noise suppression widens the horizon in research field 

when silent observation is very important. Some other versatile applications in research 

work are also performed by UAVs such as archaeological research, forestry, arctic 

research, marine research etc. (Casbeer et al., 2005; Hugenholtz et al., 2012; Runge et 

al., 2007; Saari et al., 2011; Tang & Shao, 2015; Themistocleous et al., 2014). 

 

 

Figure 1.6 UAV in agricultural application (NASA, 2015) 

 

1.6.7 Agricultural applications 

Applications of UAVs in agriculture are quite vast nowadays. UAVs are used for 

detection of forest fire, monitoring harvesting sites, crop spraying, field mapping etc. 

(Gevaert et al., 2015; Grenzdörffer et al., 2008) 
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1.7 CLASSIFICATION OF UAV 

A wide variety of metrics are used to classify UAVs that includes mass/weight, avionics 

complexity, speed, operational range, endurance, application, kinetic energy, 

operational area, operational failure consequences and other characteristics as well.  

 

1.7.1 Classification based on Range and Endurance 

A classification of UAVs in table 1.1 gives a comprehensive idea about different UAV 

system based on range and altitude. 

Table 1.1: UAV classification on range and altitude (Van Blyenburgh, 1999; Weibel 

& Hansman, 2004) 

Group Category 
Range 

(kilometer) 

Altitude 

(meter) 

Tactical UAVs 

Micro less than 10 250 

Mini less than 10 350 

Close Range 10 to 30 3000 

Short Range 30 to 70 3000 

Medium Range 70 to 200 3000 to 5000 

Medium Range 

Endurance 
more than 500 5000 to 8000 

Low Altitude Deep 

Penetration 
more than 250 50 to 9000 

Low Attitude Endurance more than 500 3000 

Medium Altitude Long 

Endurance 
more than 500 5000 to 8000 

Strategic UAVs 

High Altitude Long 

Endurance 

more than 

1000 

15000 to 

20000 

Unmanned Combat Aerial 

Vehicle 
close to 400 20000 

Special Task UAVs 
Lethal 300 3000 to 4000 

Decoys Up to 500 50 to 5000 
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1.7.2 Classification based on configuration 

Four different types of UAVs are available based on structural configuration such as 

fixed wing, rotary wing, flapping wings and blimps. Table 1.2 is offering the 

classification with their applications accordingly. 

 

Figure 1.7 Micro UAV (Black Hornet Nano) (Yarrish, 2015) 

 

 

 

 

Figure 1.8 Fixed wing UAV (Embention, 2016) 

Rotary wing UAVs are also classified by four different aerodynamic 

configurations (Bailey, 2012; ElKholy, 2014).  

i. Single rotor UAVs: A main rotor is mounted at the top of these UAVs and a 

small rotor is placed at the rear to make them stable.  

ii. Quadrotor UAVs: These types of UAV have four independent motors. They 

have two different configurations such as cross and plus configurations.  

iii. Co-axial UAVs: Two rotors are mounted on a same shaft in opposite directions.   
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iv. Multi-rotor UAVs: Mostly, these UAVs have six or eight rotors.  

 

 

Figure 1.9 Blimps (Aria’s Airship) (Staff, 2012) 

Table 1.2: UAV classification based on aerodynamic configuration (Carrillo et al., 

2012) 

Category Specifications Applications 

Fixed wing long range, high altitude 

Meteorological reconnaissance,  

environmental monitoring etc. 

(Carrillo et al., 2012) 

Rotary wing 

Vertical Take Off and 

Landing (VTOL), highly 

maneuverable 

Search and rescue, monitoring, 

agricultural applications, 

inspection, law enforcement etc. 

(Chapman, 2017) 

Flapping 

wing 

VTOL, very low endurance, 

low power consumption, low 

payload 

Surveying remote area, 

surveillance and safety of airport 

(Kamps, 2017; McDonald, 2016) 

Blimps 
Large in size, long endurance, 

low speed 

Covering any event, advertising 

and transportation of heavy loads 

(Yoshimoto & Hori; Zhang & 

Kovacs, 2012) 

 

1.7.3 Classification based on autonomy 

UAVs are also can be classified according to the autonomy level. There are ten different 

autonomy levels are mentioned here in Table 1.3 (Clough, 2002; Cook & Das, 2004; 

Valavanis & Vachtsevanos, 2014). 
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Table 1.3 Classification on the basis of autonomy 

Autonomous Control Level Description 

10 Completely autonomous 

9 Battlespace swarm cognizance 

8 Battlespace cognizance 

7 Battlespace knowledge 

6 Real-time multi-vehicle cooperation 

5 Real-time multi-vehicle coordination 

4 Fault/Event adaptive vehicle 

3 Robust response to real-time faults/events 

2 Changeable mission 

1 Execute preplanned mission 

0 Remotely piloted vehicle 

 

 

1.8 QUADROTOR 

For the first time in history, an unmanned helicopter was designed and developed by a 

French Scientist Charles Richet but it did not take flight. Finally, Louis Breguet, a 

student of  Charles Richet and his brother, Jacques could successfully develop a human 

carrying quadrotor for the first time in 1907 named Breguet -Richet Gyroplane No. 1 

that took its flight successfully (Leishman, 2002).   

Another French engineer Étienne Oehmichen took his first flight in 1924 and he 

crossed a distance of 360 m that is considered as the second flight of a quadcopter in 

the history (Esteves, 2014; Spooner, 1923). 

1.8.1 Concept  

The quadcopter is an aircraft of a rigid cross-linked structure that has four independent 

DC motors with propellers. In quadrotor, the directions of opposite rotors are always 

either clockwise or counter-clockwise. In Figure 1.13, propeller 1 and 3 rotate counter-

clockwise direction while propeller 2 and 4 rotate in clockwise direction.   
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Figure 1.10 ACL of UAVs  (Kendoul, 2012) 

 

As it is aforementioned that it has 6 DOF, quadrotor movements are described 

based on three axes as X, Y and Z. In Figure 1.13, 𝑥, 𝑦 and 𝑧 represents the movement 

along X, Y, Z-axis of quadrotor from Earth fixed frame and 𝜙, 𝜃, 𝜓 denotes rotations 

around X, Y, and Z-axis. 
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Besides three cardinal movements such as roll, pitch and yaw are considered to 

describe the attitude of a quadcopter. Roll (𝜙) is the rotation along X-axis that is  

achieved by increasing or decreasing the speed of motor 2 and 4 while pitch (𝜃) is 

achieved by trade-off between motor 1 and 3. Along with that, lateral acceleration and 

longitudinal acceleration is obtained respectively by changing 𝜙 and 𝜃 angle. Yaw (𝜓) 

is the rotation around Z axis and it is achieved by balancing the speed of the motor pair 

(1, 3) and (2, 4) simultaneously. 

 

 

Figure 1.11 Breguet -Richet Gyroplane No. 1 (Leishman, 2002) 

 

However, the mathematical model of quadrotor adopts both kinematics and 

dynamics model to explain the movement of quadrotor. Kinematics describes the 

motion of a body without considering any torque or forces on it while dynamics 

describes the motion considering torques and forces on the body. Moreover, the 

dynamics of quadrotor entails rotational and translational motion as Newton-Euler 

equations (Bresciani, 2008).  

The rotational movements like roll, pitch and yaw are generally described in 

Euler angle representation system. Interestingly, the orientation of any object can easily 

be visualized in three-dimensions (3D) space though at some specific orientation it 
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cannot be any more explainable that is widely known as “Gimbal lock”. It happens 

because of the singularity between two axes (Carino et al., 2015a; Swamp, 2016). In 

contrast, Quaternion, a hyper-complex numbering approach of four values, can 

overcome the problem though it is not so intuitive as Euler angler orientation is (Carino 

et al., 2015a; Fresk & Nikolakopoulos, 2013).  However, in methodology chapter, both 

the Euler angle and quaternion approach will be discussed in detail. 

 

 

Figure 1.12 Configuration of quadrotor whereas B and E denotes Body fixed frame 

and Earth fixed frame respectively 

1.8.2 Some features of quadrotor  

Some special features of quadrotor are mentioned in the section that inspires to choose 

quadrotor platform for this thesis. The features are introduced as following 

(Bouabdallah & Siegwart, 2005; Hoffmann et al., 2007; Hou et al., 2010; Li & Li, 

2011): 

i. Rotor mechanics of quadrotor is simpler than helicopter because helicopter 

has variable pitch and quadrotor has fixed pitch where quadrotor approaches 

the functionalities of variable pitch by changing the speed of the rotors. 
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ii. As quadcopter has symmetrical configuration of rotor, it faces less 

gyroscopic effects comparing to helicopter. 

iii. Quadrotor generates thrust by using four rotors with the propellers of small 

diameter where a helicopter produces the same thrust by using a long 

diameter propeller. As a result, a quadcopter needs a smaller area for its 

flight comparing to a helicopter. 

iv. Since the wing of a quadrotor is normally enclosed within a frame, it has 

low risk to face any collision during its operation. 

1.9 RESEARCH METHODOLOGY 

This particular section carries out with an overview on the complete work with a view 

to achieving the aforementioned objectives. At first, a good review with proper analysis 

on previous works can give a clear idea about the difficulties, short-comings and vision 

for the works. Then some feasible solutions can be offered against some available 

problems in the literatures. As the research work particularly focuses on the controller 

and orientation system of Quadrotor, the review will take place only on these certain 

areas.  

As it has already mentioned before about the limitations of Euler angle 

orientation system, Quaternion has been adopted in this work as a feasible solution for 

orientation system. 

A suitable controller is another challenge among the control designers for 

quadrotor. Researchers investigated exceedingly on quadcopter control problem using 

various control techniques such as Proportional-Integral-Derivative (PID), Linear 

Quadratic Regulator (LQR) and H-infinity and these are considered as linear control 

technique. In the meanwhile, some well-known nonlinear control techniques such as 
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Backstepping, Feedback Linearization and Model Predictive Control (MPC) are being 

applied on quadcopter as well.  

MPC achieves popularity greatly in industry because of its constraint handling 

capability as well as dealing with uncertainty to the system. Moreover, its predictive 

behavior, simplicity in tuning and dealing with multi-variable capability create some 

additional interest to the researchers.  

In this work, PID, LQR as well as MPC approaches have been designed for 

quadrotor trajectory tracking under different environments. MATLAB and Simulink 

environment has been considered in order to evaluate the aforementioned capabilities 

of MPC approach considering different trajectories tracking considering two different 

orientation systems (i.e. Euler and Quaternion). Finally, a report will be submitted that 

necessarily may include system design, controllers design and evaluation of the 

designed controllers on the basis of some parameters in order to offer the best suited 

controller for quadrotor.  

1.10 SCOPE AND LIMITATIONS 

This study will help to choose a robust controller for quadrotor based on some 

performance indexes. In addition, two different orientation system have been applied to 

quadrotor platform in order to overcome some application limitations. For example, 

some applications require the quadrotor to move almost vertical to its body and that 

cause gimbal lock problem and hence, quaternion can be a solution to overcome such a 

problem. This thesis work has addressed some limitations of the PID and LQR 

controller as aforementioned that can be overcome by MPC controller mostly.  

The validation of mathematical model design and controller design are 

performed based on simulation. However, it is recommended to validate the 
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performance through experimental results. In addition, here, only position (x, y, z) 

tracking is considered while angular movements are considered for future work. 

Therefore, the tracking performance of the controllers has been evaluated based on only 

position. Furthermore, some assumptions has been appraised for quadrotor model 

design such as structural rigidity and symmetry, propellers’ rigidity and the coincidence 

of body fixed frame with centre of gravity of the quadrotor. 

 

1.11 OUTLINE 

This dissertation is organized in five chapters as follows. 

An overview of the UAV, its classification and applications and quadrotor and 

its concept are illustrated in Chapter one. The problem statement with its significance, 

objectives, research methodology and scope of this dissertation are also discussed. 

Chapter two describes a literature review on the commonly used control 

techniques for quadrotor and a comparative discussion among the controllers. 

Chapter three presents the mathematical modeling and designing of quadrotor, 

rotor dynamics, state space model along with controller design. 

Chapter four represents the discussion on the experimented results that take 

place at MATLAB and Simulink environment.  

Chapter five will culminate at conclusion with some analogies based on 

findings, future works and suggestions. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 QUADROTOR CONTROL 

Technological advancement in Micro Electronics Mechanical System (MEMS) 

especially in sensors and microcontrollers motivates researchers greatly to work on 

quadrotor. Plenty of research works have taken places on quadrotor because of its 

versatile applications and some of its features such as simplicity to build, compactness 

in size and easier maneuverability. Among the works, some research works have been 

conducted on designing control techniques of quadrotor. Researchers from both 

robotics and control system get attracted to the control system because of ample of 

opportunities for developing new control algorithms.  Different types of control 

techniques have been considered to achieve certain performances and complete 

missions. The existing control techniques can be categorized into three different control 

techniques such as linear, nonlinear and learning based control system (ElKholy, 2014; 

Junior et al., 2013; Kendoul, 2012).  

2.1.1 Linear Control Techniques 

LQR control, PID control, H∞ algorithm and gain scheduling are the most commonly 

and conventional applied linear control techniques. In early 1970s, a full scale 

helicopter, CH-53A could achieve waypoints autonomously using a classical linear 

controller (Kendoul, 2012). 

2.1.1.1 PID and LQ control 

(Bouabdallah et al., 2004) compared the performance between PID and LQR control 

techniques on micro quadcopter and showed the system was stabilized around the hover 
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position. However, in that study it is also found that at different operating points, PID 

offered poor performance and LQR showed steady-state error in an environment with 

disturbance. (Kodgirwar et al., 2014) used a complementary filter with PID controller 

that smoothed the feedback from gyroscope and accelerometer in order to achieve 

accurate roll and pitch angles. (Joyo et al., 2013) stabilized quadrotor around certain 

perturbed conditions using auto-tuned PID with extended Kalman Filter. In that study, 

extended Kalman Filter was applied to deal with model uncertainty to the system. 

(Argentim, 2013) compared the performances among a classical LQR, a PID tuned LQR 

and Absolute Error (ITAE) tuned PID. In the work, PID tuned LQR controller was 

found robust and simply applicable while the classical PID gave faster responses and 

insignificant robustness. (Cowling et al., 2007) applied a LQR controller on quadrotor 

platform to track quasi-optimal trajectories and finally validated the accuracy of the 

controller considering constraints and wind-gust at system inputs using optimal real 

time trajectories.  

2.1.1.2 H∞ 

H∞ is a control approach that is normally applied to deal with imperfections of the 

system. The objective of the control approach is to attain a bounded ratio of two 

elements such as cost variable energy and disturbance signal energy (Raffo et al., 2011; 

Schaft & Arjan, 2000). (Araar & Aouf, 2014) designed LQR and H∞  control 

approaches to track the trajectory under wind-gust condition. In that work, they 

demonstrated LQR successfully tracked the trajectories and H∞  was able to deal with 

unmodelled nonlinearities like external disturbances (i.e. wind or gust) to the system. 

(Sorensen, 2010) presented a fully linear H∞ control approach that achieved satisfactory 
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performance in simulated results though it failed to stabilize the real-time hardware in 

presence of model uncertainty. 

H∞ control technique is advantageous when the system is multivariable with 

cross-coupled. Notwithstanding the controller requires a well-developed mathematical 

understanding and a well-designed dynamic model to achieve satisfactory performance 

(Cubillos et al., 2010). 

2.1.1.3 Gain-scheduling 

With a view to improving the capabilities of a linear model, a group of linear models 

are designed at some operating points. This approach is known as gain scheduling.  

(Sadeghzadeh et al., 2012) compared the performance of PID and gain-

scheduled PID controller at the time of dropping a payload of quadrotor where PID 

showed overshoot at that time while gain-scheduled PID showed promising 

performance. (Sawyer, 2015) demonstrated the performance of a gain-scheduled LQR 

control approach to track Lissajous and helix trajectories with changing yaw angle and 

experienced a satisfactory performance comparing to normal LQR approach. 

2.1.2 Nonlinear Control Techniques 

A linear model cannot represent a mathematically developed model accurately whereas 

it merely represents a certain nonlinear model around at a certain operating point. As a 

result, it only can perform well at those operating points at where it is linearized. It 

encourages researchers to think about a type of controller that will be able to deal with 

nonlinear model. Consequently, several control algorithms like feedback linearization, 

model predictive control, backstepping and sliding mode are most commonly used 

nonlinear control techniques.  



 

25 

2.1.2.1 Feedback linearization 

Feedback linearization is also known as dynamic inversion approach. In feedback 

linearization, the states of a nonlinear model are transformed into a new type of 

coordinate system using nonlinear transformation approach where the model becomes 

linear. Subsequently, the linear model is again transformed back to the original 

coordinate system using linear tools via inverse transformation (Kendoul, 2012). 

(Bonna & Camino, 2015) used feedback linearization to track position and yaw where 

rotational and translational dynamics are linearized systematically. (Lanzon et al., 2014) 

designed a model for quadrotor in any rotor failure case that was controlled by feedback 

linearization approach. In that work, two different loops were used where a control loop 

was used for regulating trajectory and another was used for modifying desired trajectory 

that was shown successful in simulation environment.  

2.1.2.2 Backstepping 

Backstepping is known as recursive technique to control any under-actuated linear or 

nonlinear system. It disseminates controller into several steps and make the system 

stabilized progressively (Kendoul, 2012). (Madani & Benallegue, 2006) has applied the 

backstepping control approach based on Lyapunov theory to stabilize the quadcopter at 

desired position and attitude. In that work, an under-actuated subsystem was introduced 

to control horizontal position through roll and pitch angles. On the other hand, a fully-

actuated subsystem was used to control vertical position through yaw and a propeller 

subsystem to control propeller forces. (Huo et al., 2014) applied an integral 

backstepping controller to stabilize quadrotor attitude. In that work, the controller could 

ensure promising performance of all the states of the system in presence of external 

disturbances to the system. (Fang & Gao, 2011) used adaptive integral backstepping 

control algorithm in order to ensure the robustness of the controller. This work 
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considered online disturbances to the system and validated the robustness of the 

controller through proper trajectory following.  

2.1.2.3 Sliding Mode 

Sliding mode is a switching control technique. In this control technique, the system 

states are commanded towards a chosen desired surface known as sliding surface. The 

system states remain on surface with the help of a properly designed control law (Ben 

Ammar et al., 2016). (Xu & Ozguner, 2006) proposed a sliding mode control to stabilize 

under-actuated subsystem of the quadrotor with the help of a PID controller. They 

validated the robustness of the controller considering parametric uncertainties in the 

system. (Swamp, 2016) introduced a second order sliding mode control that was 

designed on the basis of Lyapunuv theory to stabilize the quadrotor. In the work, the 

second order sliding mode controller demonstrated promising results comparing to 

conventional sliding mode controller and ensures the robustness as well.  

2.1.2.4 Model Predictive Control 

Model Predictive Control (MPC) becomes one of the widespread controllers nowadays 

because of its functionalities like input and output constraints, dealing with 

disturbances, predictive behavior, simplicity in tuning and advance performance with 

multi-variables at the same time. MPC works on the base of optimization where cost 

function is minimized depending on the current control inputs and future time interval 

by handling the constraints of states and inputs (Kendoul, 2012; Bouffard, 2012). MPC 

controller is found as more effective and accurate than PID controller in industrial 

applications (Kozák, 2012). (Raffo et al., 2008) proposed a MPC to track the reference 

trajectory considering disturbances and nonlinear H-infinity to obtain the robustness of 

the system in quadrotor. (Alexis et al., 2010) applied MPC to track attitude reference 



 

27 

under wind-gust condition of quadrotor and could achieve robust performance 

successfully. The work has successfully tracked the reference point by using a single 

MPC technique on the quadcopter platform that considers external disturbances in the 

system and constraints for the actuators saturation at control inputs. (Bouffard, 2012) 

used a new approach, Learning Based Model Predictive Control (LBMPC) in order to 

ensure robustness to the system. In that work, he demonstrated that the performance of 

the system can be improved by updating the model online which performs better than 

linear MPC. 

2.1.3 Learning Based Control Techniques 

Learning based controller is such a control technique that does not require accurate and 

precise dynamic model rather some trials and flight data for training the system to 

control a quadrotor (Kendoul, 2012). Some well-known control system like fuzzy logic, 

neural network and human based learning controller are considered under learning 

based controller. (Santos et al., 2010) developed an intelligent fuzzy controller that 

ensured promising performance in stability and precise movement of the system. The 

controller parameters tuning with the help of inter-dependent variables were the most 

successful part of the work. (Efe, 2011) could decrease the computational time and 

simplified the PID controller using Neural Network. (Pipatpaibul & Ouyang, 2013) 

compared PD Online Iterative Learning Control technique (ILC) with Switching PD 

ILC based on tracking performance in presence of model uncertainty. In that work, it is 

found that the tracking accuracy and disturbance rejection capability of Switching PD 

ILC is more satisfactory comparative to Online ILC which was evaluated by simulated 

results. 
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2.2 ADVANTAGES AND DISADVANTAGES OF DIFFERENT 

CONTROLLERS 

In this section concentrates on an analysis of commonly used controllers in quadrotor 

like PID, LQR, SMC, Feedback Linearization, Backstepping and MPC based on their 

functional advantages and disadvantages. The classical PID controller is only applied 

with linear model. This controller gives the opportunity to design the controller 

according to the desired model performance. However, it becomes more challenging to 

design a well-performed PID controller when the model is nonlinear because the gain 

cannot be chosen in any more systematic way that classical PID controller requires. In 

addition, LQR also requires a linear model to get a proper controlled system and it can 

handle multiple input and output at the same time unlike PID controller. The main 

drawback comparing to PID is that sometimes it shows steady-state error because it 

does not offer any integral part (Argentim, 2013).   

A systematic framework for modelling of a controller is the main advantage of 

feedback linearization. It is a well-performed controller when the difference between 

linear and nonlinear model is insignificant. However, it cannot guarantee the 

satisfactory response in presence of model uncertainties and offer the functionality of 

constraints handling as well. Hence, the robustness of this controller is not satisfactory 

always (Kurtz & Henson, 1998; Pop & Dulf, 2011; Zulu & John, 2016).   

Backstepping is one of the mostly chosen nonlinear control techniques that 

requires a systematic procedure and follows recursive design methodology. It can 

cancel out the nonlinear terms in the system and as a result, it does not require precisely 

designed model unlike feedback linearization. It has the capability to overcome the 

mismatched perturbations and can attain the stability asymptotically. However, the 

main drawback of this controller is over-parameterization that implies it needs many 
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parameters to give a satisfactory performance to the system that becomes sometimes 

very difficult to find out all the parameters accurately (Basri et al., 2014; Chung & 

Chang; Huo et al., 2014). 

Sliding mode control (SMC) technique has achieved a great attention for 

designing robust controllers in high-order nonlinearity of any system under 

uncertainties. It is less sensitive in disturbances and parametric uncertainties that can 

ensure the robustness to the system. However, it offers chattering problem that happens 

because of continuous switching of controlled model. As a result, it may provoke energy 

loss, unmodeled dynamics and system instability that is hazardous for the system 

sometimes (Bendaas & Naceri, 2013; Levant, 2007; Runcharoon & Srichatrapimuk, 

2013; Shtessel et al., 2014) 

MPC has been used in different process of chemical industries and refineries for 

more than three decades. Currently researchers shows great interested to apply it in all 

type of complex controlling system because of its versatile capability as aforementioned 

(Bouffard, 2012). 

2.3 CHAPTER SUMMARY 

In this chapter, different types of control algorithm for quadrotor have been discussed. 

Different control techniques have their own specialties with their unique algorithms that 

depend on the applications of quadrotor. Finally, a comparative discussion of different 

controllers with their advantages and disadvantages have been carried out to attain a 

comprehensive and intuitive idea on controllers and their applications. From the review, 

it can be found out that the features of MPC like predicting behavior and multiple 

constraint handling are really attractive comparing to other controllers and can be 

considered as a suitable controller for quadrotor. Besides, it should be informed that 
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tracking performance of MPC is slower because of high computation. However, with 

the blessing of modern technology, the drawback can be overcome using some 

advanced computational devices.   

 

Table 2.1 A review of different controllers 

 

Controllers Advantages Disadvantages 

PID 
Easy to choose gain; can overcome 

steady-state error. 

Cannot handle constraints, 

noise and disturbance; 

can’t deal with multiple 

inputs and outputs at the 

same time. 

LQR 
Can deal with multiple inputs and 

outputs 

Sometimes fails to 

overcome steady-state 

error. 

Feedback 

Linearization 

Systematic model framework; well-

performed when linear and nonlinear 

models are almost similar 

Incapability of constraints 

handling and model 

uncertainties, poor 

robustness 

Backstepping 

Systematic and recursive designed; 

precisely designed model is not 

required; can handle nonlinearities to 

the system; can overcome 

mismatched perturbations and 

ensures stability. 

Over-parameterization; 

difficult to choose proper 

parameters 

SMC 

Well-performed in high-nonlinearity; 

less sensitivity in disturbances and 

model uncertainties. 

Chattering problem 

sometimes create system 

instability. 

MPC 

Predicts future behavior of the states; 

deal with multiple inputs and outputs 

at the same time; can handle 

constraints at inputs and outputs; can 

overcome noise and disturbances 

Slow in tracking 
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CHAPTER THREE 

METHODOLOGY 

3.1 INTRODUCTION  

This chapter describes mathematical modeling and controllers design of quadrotor. As 

orientation system, Euler angle and Quaternion representation system have been 

considered to derive the mathematical model. According to that, two different 

mathematical models has been developed here and then controllers have been designed 

based on the designed models with proper model verifications. The next chapter entails 

the performance of the controllers based on several factors to give a comprehensive idea 

about the designed controllers that will help to choose suitable controller further. 

 

3.2 MATHEMATICAL MODEL 

Mathematical model is required to develop the system and make the system compatible 

with controller. The mathematical model can be explained by kinematics and dynamics. 

Newton-Euler method has been considered to develop the mathematical model of 

quadrotor. In addition, aerodynamic drags and moments have been considered also in 

order to make the model more accurate that sometimes are neglected in other literatures.  

 

3.2.1 Kinematic Model 

Kinematic modelling is completely dependent on the coordinate system. In addition, it 

is required to explain the orientation of a rigid body with the help of a fixed coordinate 

system. In this section, two different orientation systems (i.e. Euler angle and 
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Quaternion) have been considered in order to describe the kinematic modelling 

respectively. 

3.2.1.1 Euler Angle Representation 

 

 

Figure 3.1 Coordinate system according to Euler angle 

 

 

Figure 3.1 offers two different notation X-Y-Z and N-E-D.  X-Y-Z illustrates 

the Earth fixed frame whereas N-E-D indicates North-East-Downward for the Body 

frame of quadrotor. In figure 1.15, Earth fixed frame, N-E-D is renamed as X-Y-Z in 

order to maintain the conventional naming. Here, it is considered that in body frame, 

center of gravity acts along Z axis direction and  𝑟 is the distance between Earth fixed 

frame and body frame where r = [𝑥, 𝑦, 𝑧]𝑇.  

 

Euler Angle Rotation  

Since the movement of quadrotor is expressed based on two different frame of 

references, a transformation matrix is necessarily developed to maintain a relation 

between these two frame of references. Here, 𝑅 is considered as a transformation matrix 

that helps to determine the position and movement from Earth fixed frame to Body fixed 

frame. 
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Let, the quadrotor has changed its yaw of 𝜓 angle, pitch of 𝜃 and roll of 𝜙 with 

respect to Earth fixed frame respectively. Hence, the following equations can be 

achieved. 

 
𝑅𝜓 = (

cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

) (3.1) 

 
𝑅𝜃 = (

cos𝜃 0 sin𝜃
0 1 0

−sin𝜃 0 cos𝜃
) (3.2) 

 

𝑅𝜙 = (
1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos𝜙

) (3.3) 

Therefore, the rotation matrix from Body frame to Earth fixed frame, 𝑅𝐸𝐵 can 

be achieved by the product of the aforementioned successive rotations as follows in 

equation (3.4) and (3.5). Noted that it is the most commonly used rotation matrix in 

different literatures (Bouabdallah, 2007; ElKholy, 2014; Lindblom & Lundmark, 2015). 

 𝑅𝐸𝐵 = 𝑅𝜙𝑅𝜃𝑅𝜓 (3.4) 

 

𝑅𝐸𝐵 = (

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃 

𝑐𝜓𝑠𝜙𝑠𝜃 𝑠𝜓𝑠𝜙𝑠𝜃 + 𝑐𝜃𝑐𝜓  𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜓𝑠𝜙 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜃𝑐𝜓 𝑐𝜙𝑐𝜃

) (3.5) 

where, 𝑐, 𝑠 and 𝑡 denotes cos, sin and tan respectively. 

Finally, the rotation matrix of quadrotor can be achieved that will describe the 

transformation from Earth fixed frame to Body frame as follows in equation (3.6) where 

subscript B and E denotes the position along axes in Body frame and Earth fixed frame 

respectively. 
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               (

𝑥𝐵

𝑦𝐵

𝑧𝐵

) = 𝑅𝐸𝐵 (

𝑥𝐸

𝑦𝐸

𝑧𝐸

)

=  (

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃 

𝑐𝜓𝑠𝜙𝑠𝜃 𝑠𝜓𝑠𝜙𝑠𝜃 + 𝑐𝜃𝑐𝜓  𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜓𝑠𝜙 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜃𝑐𝜓 𝑐𝜙𝑐𝜃

)(

𝑥𝐸

𝑦𝐸

𝑧𝐸

) 

 

 

(3.6) 

Therefore, the inverse of 𝑅𝐸𝐵 will give the rotation matrix for a Body frame to 

Earth fixed frame. As 𝑅𝐸𝐵 is an orthogonal matrix, the inverse of this matrix and 

transpose of the matrix remain same. 

 𝑅𝐵𝐸 = 𝑅𝐸𝐵
−1 = 𝑅𝐸𝐵

𝑇

= (

𝑐𝜃𝑐𝜓 𝑐𝜓𝑠𝜙𝑠𝜃 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜓𝑠𝜙

𝑐𝜃𝑠𝜓 𝑠𝜓𝑠𝜙𝑠𝜃 + 𝑐𝜃𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜃𝑐𝜓

−𝑠𝜃  𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

) 

 

(3.7) 

Euler Angle Dynamics 

The transformation matrix is derived to formulate a relation between Earth fixed frame 

and Body frame. For instance, thrust forces are measured in Body frame while 

gravitational forces and the position of quadrotors are measured in Earth fixed frame. 

This transformation matrix helps to maintain relation between two frames of references 

along with to develop the dynamic model of the system also. Similarly, angular velocity 

of the quadrotor is measured on Body frame using on-board Inertial Measurement Unit 

(IMU). Hence, another transformation matrix 𝑅𝑟 is required to make a relation between 

Euler rates, �̇� = [�̇�, �̇�, �̇�]𝑇 and angular velocity of quadrotor, 𝜔 =  [𝑝, 𝑞, 𝑟]𝑇 as 

follows (Islam et al., 2017; Sabatino, 2015).  

 𝜔 = 𝑅𝑟�̇� (3.8) 
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(
𝑝
𝑞
𝑟
) =  (

1 sin𝜙𝑡𝜃 cos𝜙tan𝜃
0 cos𝜙 −sin𝜙

0
sin𝜙

cos𝜃

cos𝜙

cos𝜃

)(

�̇� 

�̇�
�̇�

) (3.9) 

 

𝑅𝑟 = (

1 sin𝜙tan𝜃 cos𝜙tan𝜃
0 cos𝜙 −𝑠𝜙

0
sin𝜙

cos𝜃

cos𝜙

cos𝜃

) (3.10) 

 

3.2.1.2 Quaternion 

Quaternion, a four-tuple orientation system is widely being used as an alternative of 

Euler angle orientation. In literatures, it is found that Euler angle shows singularities at 

some certain situations and it is failed to determine the accurate angle when any 

incremental changes take place over time in attitude (Kulumani & Lee, 2017). In 

contrary, Quaternion is more successful in both the situations comparing to Euler angle. 

Moreover, it is computationally cheaper, more stable and more efficient (Diebel, 2006; 

Fresk & Nikolakopoulos, 2013; Horn, 2001). A quaternion contains a scalar part or real 

number and a vector part or complex number part that is consists of three elements in 

the complex space as follows (Fresk & Nikolakopoulos, 2013) 

 𝑞 = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞3 + 𝑘𝑞4 (3.11) 

In different research works it is symbolizes as (Reyes-Valeria et al., 2013) 

follows. 

 

𝑞 =  (

𝑞0

𝑞1

𝑞2

𝑞3

) = (
𝑞0

𝒒 ) (3.12) 
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Quaternion Rotation 

According to Euler’s rotation theorem, a rotation can be described by an angle 𝛼 and a 

unit vector of three dimensions, 𝑒  that can be expressed as 𝑒 = 𝑖𝑒1 + 𝑗𝑒2 + 𝑘𝑒3 

where 𝑖, 𝑗 and 𝑘 symbolizes x, y and z axis (Carino et al., 2015b). Quaternion can be 

represent also as 𝑞 = 𝑐𝑜𝑠 (
𝛼

2
) +  𝑒 𝑠𝑖𝑛 (

𝛼

2
) 

The vector representation will be as follows: 

 

𝑞 = (
𝑐𝑜𝑠 (

𝛼

2
)

𝑒 𝑠𝑖𝑛 (
𝛼

2
)
) (3.13) 

Similar to Euler angles, Quaternion has also transformational matrix from 

Body frame to Earth fixed frame as follows (Kurtz & Henson, 1998). 

𝑄𝐵𝐸 = (

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞0𝑞2 + 𝑞1𝑞3)

2(𝑞1𝑞2 + 𝑞0𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞0𝑞1 + 𝑞2𝑞3) 1 − 2(𝑞1
2 + 𝑞2

2)

) (3.14) 

Hence, the transformational matrix from Earth-fixed frame to Body frame as 

follows (Lindblom & Lundmark, 2015): 

𝑄𝐸𝐵 = (

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 1 − 2(𝑞1
2 + 𝑞2

2)

) (3.15) 

Quaternion Dynamics  

In order to define a complete orientation of quadrotor in space, Quaternion offers a 

rotational matrix that can represent the changes of orientation with respect to time alike 

Euler angle (Chung & Chang; Zulu & John, 2016). 
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�̇� =
1

2
(

𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0

)(

0
𝑝
𝑞
𝑟

) (3.16) 

 

3.2.2 Dynamic Model 

The dynamic model of the quadrotor can be divided into translational motion and 

rotational motion. Translational motion is a consequence of some forces while 

rotational motion is a result of some torques which are generated by motor thrust. These 

two different types of motions are described as follows. 

 

3.2.2.1 Translational Motion 

The translational motion of a quadrotor is derived by Newton’s second law and it is 

measured on Earth-fixed frame. This motion can be achieved by proper mathematical 

derivation among several forces like gravitational force (𝐹𝑔), thrust forces (𝐹𝑡), 

aerodynamic drag force (𝐹𝑎) and disturbances (𝐹𝑑) from surroundings as follows in 

equation (3.17). Noted that the generated force from a motor is considered as 𝐹𝑖 = 𝑘𝑓𝛺𝑖
2 

where 𝛺𝑖 is denoted as angular velocity of 𝑖𝑡ℎ motor and 𝑘𝑓 is symbolized as 

aerodynamic force constant (ElKholy, 2014). 

 𝑚�̈� =  𝐹𝑔 + 𝐹𝑡 + 𝐹𝑎+𝐹𝑑 (3.17) 

where, 

𝐹𝑡 = (

0
0

−𝑘𝑓(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2)
) 

𝑚 = Quadrotor mass 
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�̈� = (
�̈�
�̈�
�̈�
) = Accelerations along axes 

𝑔 = Gravitational acceleration = 9.81m/s2 

Equation (3.17) can be modified with help of equation (3.18) and becomes 

equation (3.19) as follows. 

 𝐹𝑎 = 𝑘𝑡�̇� (3.18) 

 
𝑚 (

�̈�
�̈�
�̈�
) =  (

0
0

𝑚𝑔
) + 𝑅𝐸𝐵 (

0
0

−𝑈1

) − 𝑘𝑡  (
�̇� 
�̇�
 �̇�

) + 𝐹𝑑 
(3.19) 

where, 

𝐹𝑡 = 𝑅𝐸𝐵 (
0
0

−𝑈1

) = Thrust force produced by motors 

𝑈1 = 𝑘𝑓(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2)  

�̇� = (
�̇� 
�̇�
�̇�
) = Derivative of position vector of quadrotor with respect of time along axes 

𝑘𝑡 = (

𝑘𝑡𝑥 0 0

0 𝑘𝑡𝑦 0

0 0 𝑘𝑡𝑧

) = Aerodynamic drag force constant matrix 

Similarly, in order to represent the equation (3.17) according to quaternion 

orientation system, it can be represented as follows (Lindblom & Lundmark, 2015). 

 
𝑚 (

�̈� 
�̈�
 �̈�

) =  (
0
0

𝑚𝑔
) + 𝑄𝐸𝐵 (

0
0

−𝑈1

) − 𝑘𝑡  (
�̇� 
�̇�
 �̇�

) + 𝐹𝑑 (3.20) 

3.2.2.2 Rotational Motion 

Rotational equations of motion of a quadrotor are calculated using Newton-Euler 

method in Body frame. The generalized equation of rotational equations for quadrotor 
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can be explained considering gyroscopic moment (𝑀𝑔), moment on body frame (𝑀𝑏), 

drag moment (𝑀𝑎) and moment caused by disturbances (𝑀𝑑).  

 𝐼�̇� = −𝜔 × 𝐼𝜔 − 𝑀𝑔 + 𝑀𝑏 + 𝑀𝑎 + 𝑀𝑑  (3.21) 

where,  

𝐼�̇� and 𝜔 × 𝐼𝜔 = the rate of change of angular momentum in the quadrotor body frame. 

�̇� = (
�̇�
�̇�
�̇�

) = Derivative of angular velocity of quadrotor with respect to time 

𝑀𝑔 = 𝜔 × (
0
0

𝐼𝑟𝜔𝑟

) = Gyroscopic moment 

𝑀𝑏 = Moment acting on the body frame  

𝐼𝑟 = Rotors’ inertia 

𝜔𝑟 = Rotors’ relative speed  

     = −𝛺1 + 𝛺2−𝛺3 + 𝛺4 

Matrix of Inertia 

The inertia matrix is a square matrix 3 × 3 because of x, y and z-axes. As the quadrotor 

is considered symmetrical, the off diagonal elements are zero and it transforms into a 3 

× 3 diagonal matrix as follows. 

 

𝐼𝑟 = (

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

) (3.22) 

where, 𝐼𝑥𝑥, 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are the moment of inertia along x, y and z axes of body frame. 

Gyroscopic Moment 

Gyroscopic moment 𝑀𝑔 is produced because of the rotation of motors that tries to spin 

the quadrotor along z-axis. 
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Moment Acting on the Body Frame 

As the air density and maximum altitude of a quadrotor is limited, moment on individual 

motor is proportional to the square of motor. So the equation as follows: 

 𝑀𝑖 = 𝑘𝑀𝛺𝑖
2 (3.23) 

where, 𝑘𝑀 = aerodynamic moment constant 

Here, the moment of 𝑖th motor depends on the rotor speed of 𝑖th motor and its 

moment arm. Let, the required moment is now about x-axis. According to the right-

hand rule, 𝐹2 multiplied with the arm, 𝑙 generates a negative moment while 𝐹4 is 

multiplied with the arm 𝑙 and generates positive moment. Therefore, the total moment 

can be defined as 

 𝑀𝑥 = −𝐹2𝑙 + 𝐹4𝑙  

                                                 = − 𝑘𝑓𝛺2
2𝑙 + 𝑘𝑓𝛺4

2𝑙  (3.24) 

If the required moment is considered about y-axis, according to the right-hand 

rule, 𝐹1 creates a positive moment and 𝐹3 creates a negative moment with the help of 𝑙 

similarly. Then the total moment about y-axis will be 

 𝑀𝑦 = −𝐹3𝑙 + 𝐹1𝑙  

                                                 = − 𝑘𝑓𝛺3
2𝑙 + 𝑘𝑓𝛺1

2𝑙  (3.25) 

 

Figure 3.2 Forces and moments on Quadrotor 
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In case of z-axis, there is no moment that is generated by thrust force. However, 

according to the equation (3.23) and right hand rule, the total moment about z-axis will 

be expressed as: 

 𝑀𝑧 = 𝑀1 − 𝑀2 + 𝑀3 − 𝑀4  

                                         = 𝑘𝑀𝛺1
2 − 𝑘𝑀𝛺2

2 + 𝑘𝑀𝛺3
2 − 𝑘𝑀𝛺1

2  

                                         = 𝑘𝑀(𝛺1
2 − 𝛺2

2 + 𝛺3
2 − 𝛺1

2) (3.26) 

Therefore, from equation (3.24), (3.25) and (3.26), finally the moment, 𝑀𝑏 can 

be represented in a matrix form as follows in equation (3.27) 

 

 𝑀𝑏 = (

𝑘𝑓𝑙(𝛺4
2 − 𝛺2

2) 

 𝑘𝑓𝑙(−𝛺3
2 + 𝛺1

2) 

𝑘𝑀(𝛺1
2 − 𝛺2

2 + 𝛺3
2 − 𝛺1

2)

) (3.27) 

Drag Moment 

Drag moment, 𝑀𝑔 is produced because of air friction, as like drag force and it is 

proportional to angular speeds of the quadrotors as follows: 

 

𝑀𝑎 = 𝑘𝑟 (
𝑝
𝑞
𝑟
) (3.28) 

where, 

 𝑘𝑟 = (

𝑘𝑟𝑥 0 0

0 𝑘𝑟𝑦 0

0 0 𝑘𝑟𝑧

) = Aerodynamic drag coefficient matrix 

Hence, equation (3.21) can be represented as 

 

𝐼�̇� = −𝜔 × 𝐼𝜔 − 𝜔 × (
0
0

𝐼𝑟𝜔𝑟

) + (
𝑙𝑈2

𝑙𝑈3

𝑈4

) − 𝑘𝑟 (
𝑝
𝑞
𝑟
) (3.29) 

where,  

𝑈2 = 𝑘𝑓(𝛺4
2 − 𝛺2

2)    

𝑈3 = 𝑘𝑓(−𝛺3
2 + 𝛺1

2)  
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𝑈4 = 𝑘𝑀(𝛺1
2 − 𝛺2

2 + 𝛺3
2 − 𝛺1

2)  

Finally the mathematical equation on Euler angle orientation can be developed 

by considering equation (3.9), (3.19) and (3.29) as follows: 

 
�̈� =

−1

𝑚
[𝑘𝑡𝑥�̇� +  𝑈1(𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃)] (3.30) 

 
�̈� =

−1

𝑚
[𝑘𝑡𝑦�̇� +  𝑈1(𝑠𝜙𝑐𝜓 − 𝑐𝜙𝑠𝜓𝑠𝜃)] (3.31) 

 
�̈� =

−1

𝑚
[𝑘𝑡𝑧 �̇� − 𝑚𝑔 + 𝑈1𝑐𝜙𝑐𝜃]  (3.32) 

 �̇� = 𝑝 + 𝑟𝑐𝜙𝑡𝜃 + 𝑞𝑠𝜙𝑡𝜃 (3.33) 

 �̇� = 𝑞𝑐𝜙 − 𝑟𝑠𝜙 (3.34) 

 
�̇� = 𝑟

𝑐𝜙

𝑡𝜃
+ 𝑞

𝑠𝜙

𝑐𝜃
 (3.35) 

 
�̇� =  

−1

𝐼𝑥
[𝑘𝑟𝑥𝑝 − 𝑙𝑈2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟] (3.36) 

 
�̇� =  

−1

𝐼𝑦
[−𝑘𝑟𝑦𝑞 + 𝑙𝑈3 − 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟] (3.37) 

 
�̇� =

−1

𝐼𝑧
[𝑈4 − 𝑘𝑟𝑧𝑟 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞] (3.38) 

Similarly, for quaternion, another mathematical model can be derived by 

adopting equation (3.16), (3.20) and (3.29) as follows: 

 
�̈� =

−1

𝑚
[𝑘𝑡𝑥�̇� +  𝑈1(2𝑞0𝑞2 + 2𝑞1𝑞3)] (3.39) 

 
�̈� =

−1

𝑚
[𝑘𝑡𝑦�̇� −  𝑈1(2𝑞0𝑞2 − 2𝑞1𝑞3)] (3.40) 

 
�̈� =

−1

𝑚
[𝑘𝑡𝑧 �̇� − 𝑚𝑔 + 𝑈1(2𝑞0

2 + 2𝑞3
2 − 1)]  (3.41) 

 
𝑞0̇ =

1

2
[−𝑝𝑞1 − 𝑞𝑞2 − 𝑟𝑞3] (3.42) 
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𝑞1̇ =

1

2
[𝑝𝑞0 − 𝑞𝑞3 + 𝑟𝑞2] (3.43) 

 
𝑞2̇ =

1

2
[𝑝𝑞3 + 𝑞𝑞0 − 𝑟𝑞0] (3.44) 

 
𝑞3̇ =

1

2
[−𝑝𝑞2 + 𝑞𝑞1 + 𝑟𝑞0] (3.45) 

 
�̇� =  

−1

𝐼𝑥
[𝑘𝑟𝑥𝑝 − 𝑙𝑈2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟] (3.46) 

 
�̇� =  

−1

𝐼𝑦
[−𝑘𝑟𝑦𝑞 + 𝑙𝑈3 − 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟] (3.47) 

 
�̇� =

−1

𝐼𝑧
[𝑈4 − 𝑘𝑟𝑧𝑟 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞] (3.48) 

3.3 ROTOR DYNAMICS 

Brushless DC motors are very popular for quadrotors because of its low friction and 

high torque. In this work, it is considered that the motors are directly connected with 

propellers without any help of gear box. In general, the Brushless DC motor behaves 

like a conventional DC motor and due to that their dynamic is also same. The schematic 

diagram of a brushless DC motor has been demonstrated as follows. 

 

 

Figure 3.3 DC Motor Schematic Diagram (ElKholy, 2014) 
 

The equation for motors can be achieved using Kirchhoff’s law as follows. 
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𝑉 = 𝑅𝑚𝑜𝑡𝑖𝑎 + 𝐿𝑚𝑜𝑡

𝑑𝑖𝑎
𝑑𝑡

+ 𝐾𝑚𝑜𝑡𝛺 (3.49) 

where  

𝑅𝑚𝑜𝑡 = a motor’s resistance 

𝐿𝑚𝑜𝑡 = a motor’s inductance 

𝑖𝑎= flowing current around armature 

V = motor input voltage 

𝐾𝑚𝑜𝑡= motor torque constant 

𝐾𝑚𝑜𝑡𝛺= Electromotive force 

As the inductance of small motor is very small, the equation (3.49) can be 

represented as: 

 𝑉 = 𝑅𝑚𝑜𝑡𝑖𝑎 + 𝐾𝑚𝑜𝑡𝛺 (3.50) 

From mechanical derivation of motor, another equation can be formulated as 

follows. 

 𝐽𝑟�̇� = 𝑇𝑚𝑜𝑡 − 𝑇𝑙𝑜𝑎𝑑 (3.51) 

where,  

𝑇𝑚𝑜𝑡= motor torque produced by electricity 

𝑇𝑙𝑜𝑎𝑑= load torque produced by propeller from equation (3.23) 

 

Therefore the equation (3.52) can be represented by the following equation 

(3.55) where 𝑖𝑎 has been derived from equation (3.51). 

 𝐽𝑟�̇� = 𝐾𝑚𝑜𝑡𝑖𝑎 − 𝑘𝑀𝛺2 (3.52) 

 
𝐽𝑟�̇� = 𝐾𝑚𝑜𝑡

𝑉 − 𝐾𝑚𝑜𝑡𝛺𝑎

𝑅𝑚𝑜𝑡
− 𝑘𝑀𝛺2 (3.53) 

The voltage can be represented as follows in equation (3.54) from equation 

(3.53). 
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𝑉 =  

𝑅𝑚𝑜𝑡

𝐾𝑚𝑜𝑡
𝐽𝑟�̇� + 𝐾𝑚𝑜𝑡𝛺 + 𝑘𝑀𝛺2𝑅𝑚𝑜𝑡 (3.54) 

A lag transfer function has been derived in order to achieve the rotor dynamics. 

The lag transfer function includes two variables like gain and time constant. These two 

variable are identified using MATLAB System Identification Toolbox (Mathworks, 

2018). This lag transfer function offers a simple transfer function that is a ratio between 

actual propeller speed and desired propeller speed. Noted that both the speeds are 

directly proportional to the supplied voltage to the motors as found from equation 

(3.55). The transfer function that has been achieved for OS4 quadrotor as follow 

(Bouabdallah, 2007). 

 

 
𝐺(𝑠) =

Actual speed of rotor

Desired speed of the rotor
=  

0.936

0.178𝑠 + 1
 (3.55) 

 

3.4 STATE SPACE MODEL 

A state space model is the representation of a dynamic model of the system. However, 

a state space model helps to estimate the behavior of any system and as a result, a 

suitable controller can be designed accordingly. Hence, a state space model has been 

developed in this section based on following steps. 

State Vector  

State Vector is necessarily mentioned in order to describe the complete dynamic model 

of a quadrotor. In this work, two different orientation systems have been described and 

hence, two different state vectors have been represented. Dynamic model for Euler 

angle orientation requires 12 states in equation (3.56) while quaternion requires 13 

states in equation (3.57). 
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 𝑋𝑠𝑒
 =  [𝑥    𝑦     𝑧     �̇�     �̇�    �̇�    𝜙     𝜃     𝜓     𝑝     𝑞     𝑟]𝑇 (3.56) 

        𝑋𝑠𝑞
 = [𝑥    𝑦     𝑧     �̇�     �̇�    �̇�     𝑞0    𝑞1     𝑞2     𝑞3     𝑝     𝑞     𝑟]𝑇 (3.57) 

Control Input Vector 𝑼 

The control input vector 𝑈 consists of 𝑈1, 𝑈2, 𝑈3 and 𝑈4. The equations are as follows: 

 𝑈1 = 𝑘𝑓(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2) (3.58) 

 𝑈2 = 𝑘𝑓(𝛺4
2 − 𝛺2

2) (3.59) 

 𝑈3 = 𝑘𝑓(−𝛺3
2 + 𝛺1

2) (3.60) 

 𝑈4 = 𝑘𝑀(𝛺1
2 − 𝛺2

2 + 𝛺3
2 − 𝛺1

2) (3.61) 

Alternatively, equation (3.58) to (3.61), it can be represented in matrix form as 

follows in equation (3.62) 

 

(

𝑈1

𝑈2

𝑈3

𝑈4

) =

(

 
 

𝑘𝑓 𝑘𝑓 𝑘𝑓 𝑘𝑓

0 𝑘𝑓 0 −𝑘𝑓

−𝑘𝑓 0 𝑘𝑓 0

𝑘𝑀 −𝑘𝑀 𝑘𝑀 −𝑘𝑀)

 
 

(

 
 

𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2
)

 
 

 (3.62) 

However, when the rotor velocities are required to be estimated from the control 

inputs, an inverse relationship between the control inputs and the rotors' velocities can 

be formulated that has been described as follows in equation (3.63). 

 

(

 
 

𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2
)

 
 

= 

(

 
 
 
 
 
 
 

1

4𝑘𝑓
0

1

2𝑘𝑓

1

4𝑘𝑀

1

4𝑘𝑓

1

2𝑘𝑓
0 −

1

4𝑘𝑀

1

4𝑘𝑓
0

1

2𝑘𝑓

1

4𝑘𝑀

1

4𝑘𝑓
−

1

2𝑘𝑓
0 −

1

4𝑘𝑀)

 
 
 
 
 
 
 

(

𝑈1

𝑈2

𝑈3

𝑈4

) (3.63) 
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State-space representation 

Now considering equation from (3.30) to (3.38), a state-space representation can be 

described as follows according to Euler angle orientation system in equation (3.64). 

Here, the states space equations have been shown through the function of state vectors 

and control inputs. In Euler angle orientation, state vectors are denoted by 𝑋𝑠𝑒
while 

control inputs are denoted  by 𝑈. 

 

 𝑓(𝑋𝑠𝑒
 , 𝑈) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̇�
�̇�
�̇�

−1

𝑚
[𝑘𝑡𝑥�̇� +  𝑈1(𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃)]

−1

𝑚
[𝑘𝑡𝑦�̇� +  𝑈1(𝑠𝜙𝑐𝜓 − 𝑐𝜙𝑠𝜓𝑠𝜃)]

 
−1

𝑚
[𝑘𝑡𝑧 �̇� − 𝑚𝑔 + 𝑈1𝑐𝜙𝑐𝜃]

𝑝 + 𝑟𝑐𝜙𝑡𝜃 + 𝑞𝑠𝜙𝑡𝜃
𝑞𝑐𝜙 − 𝑟𝑠𝜙

𝑟
𝑐𝜙

𝑡𝜃
+ 𝑞

𝑠𝜙

𝑐𝜃

 
−1

𝐼𝑥
[𝑘𝑟𝑥𝑝 − 𝑙𝑈2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟]

−1

𝐼𝑦
[−𝑘𝑟𝑦𝑞 + 𝑙𝑈3 − 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟]

−1

𝐼𝑧
[𝑈4 − 𝑘𝑟𝑧𝑟 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.64) 

Accordingly, the state space model for quaternion orientation system can be 

derived from equation (3.39-3.48). Similar to Euler angle orientation, state space 

equations for quaternion orientation have been illustrated through the function of state 

vectors, 𝑋𝑠𝑞
 and control inputs, 𝑈. Noted that disturbances have not been considered in 

both state space equations for both Euler angle and quaternion orientation.  
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 𝑓 (𝑋𝑠𝑞
 , 𝑈) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̇�
�̇�
�̇�

−1

𝑚
[𝑘𝑡𝑥�̇� +  𝑈1(2𝑞0𝑞2 + 2𝑞1𝑞3)]

−1

𝑚
[𝑘𝑡𝑦�̇� −  𝑈1(2𝑞0𝑞2 − 2𝑞1𝑞3)]

−1

𝑚
[𝑘𝑡𝑧 �̇� − 𝑚𝑔 + 𝑈1(2𝑞0

2 + 2𝑞3
2 − 1)] 

1

2
[−𝑝𝑞1 − 𝑞𝑞2 − 𝑟𝑞3]

1

2
[𝑝𝑞0 − 𝑞𝑞3 + 𝑟𝑞2]

1

2
[𝑝𝑞3 + 𝑞𝑞0 − 𝑟𝑞0]

1

2
[−𝑝𝑞2 + 𝑞𝑞1 + 𝑟𝑞0]

−1

𝐼𝑥
[𝑘𝑟𝑥𝑝 − 𝑙𝑈2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟]

−1

𝐼𝑦
[−𝑘𝑟𝑦𝑞 + 𝑙𝑈3 − 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟]

−1

𝐼𝑧
[𝑈4 − 𝑘𝑟𝑧𝑟 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.65) 

 

3.5 LINEAR MODEL VERIFICATION 

In classical controller design, derivation of a linear model is the most important concern 

before controller design. Besides, the model verification is another important step to the 

way of controller design as well. Significantly, the behavior of model is evaluated based 

on some parameters in order to make it worthy for proper controller design. Hence, the 

necessary steps have been demonstrated in this section in order to evaluate the behavior 

of the model. 

  

3.5.1 Linearization 

As both LQR and MPC approaches need a linear model, the nonlinear model is required 

to be linearized around an operating point, (𝑋𝑠𝑠, 𝑈𝑠𝑠). Here, Jacobian method is applied 
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to derive the linearized model from the dynamic model. Therefore, the state-space 

model for Euler angle orientation will be as follows: 

 
𝐴 =  

∂𝑓(𝑋𝑠 , 𝑈)

∂𝑋𝑠
 (3.66) 

 
𝐵 =  

∂𝑓(𝑋𝑠 , 𝑈)

∂𝑈
 (3.67) 

Therefore, a 12×12 matrix, A and a 12×4 matrix, B (as mentioned in Appendix 

B) has been derived when the system is designed in Euler angle while A and B matrices 

are 13×13 and 13×4 in Quaternion based designed system (as mentioned in Appendix 

B). Hence, the generalized linear model of the quadrotor will be as follows: 

  δ�̇�𝑠 =  𝐴δ𝑋𝑠 + 𝐵δ𝑈𝑠 (3.68) 

 δ𝑌𝑠 = 𝐶δ𝑋𝑠 (3.69) 

where,  

δ𝑋 = 𝑋𝑠 − 𝑋𝑠𝑠 

δ𝑈 = 𝑈𝑠 − 𝑈𝑠𝑠  

3.5.2 Controllability and Observability 

Controllability and observability are the two most important concepts in the modern 

control theory for linearization. R. Kalman introduced these two concepts in 1960 to 

verify any model if it is solvable by linearization (Kalman, 1970).  

Controllability  

When it is possible to find out control inputs that can accept an initial state and lead it 

to the desired state, the system is called controllable. 



 

50 

Observability  

When the states of a system can be measured by output values, the system is considered 

as observable.   

A system can be considered as controllable and observable when it is full-

ranked. The linear system can be considered as follows in order to find out the 

observability and controllability of the system (Sabatino, 2015). 

 δ𝑋𝑠
̇ =  𝐴δ𝑋𝑠  where,  𝑋𝑠𝑠(𝑡0) = 𝑋0  

 δ𝑌𝑠 = 𝐶δ𝑋𝑠  

According to the mathematical derivation, 𝑋𝑠𝑠 and 𝑌𝑠𝑠 are 12×1 matrices. The 

observability matrix will be shown as follows. 

 O = [𝐶    𝐶𝐴     𝐶𝐴2    …     𝐶𝐴11]𝑇  

Here, O is 144×12 matrix. The linear system can be observable when the 

observability matrix will be full ranked. 

 C = [𝐵    𝐴𝐵     𝐴2𝐵   …    𝐴11𝐵]  

Here, C is 12×48 matrix. The linear system can be controllable when the 

controllability matrix will be full ranked. 

On the other hand, the system is also observable for quaternion orientation while 

𝑋𝑠 and 𝑌𝑠 are 13×1 matrices. Surprisingly, it is found that the system is not controllable 

for quaternion. Here, only 12 states are controllable and 𝑞0 is not controllable. However, 

it is known from the definition of unit quaternion as follows (Reyes-Valeria et al., 

2013):  

 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 (3.70) 

Therefore, 𝑞0 can be solved from the equation 3.70 (Long et al., 2012). For 

quaternion, both 𝑋𝑠 and 𝑌𝑠 are considered as 12×1 matrices. As a result, O will be 
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144×12 matrix and C is 12×48 matrix as well for quaternion orientation like Euler 

angle orientation. 

MATLAB environment is used to check the observability and controllability of 

the system and finally it is found that the system is controllable and observable for both 

Euler angle and quaternion orientation after modification as aforementioned. 

3.5.3 Open Loop Simulation 

Open loop simulations of designed linear model and nonlinear model are proceeded in 

this section in order to ensure that both the linear model at a certain operating point and 

nonlinear model work with minimal error. MATLAB and Simulink environment has 

been adopted to proceed on the simulation process. Noted that the parameters of 

quadrotor have taken from the PhD thesis of Bouabdallah that was prepared based on 

project OS4 (Bouabdallah, 2007) (see in Appendix A).  

Open simulations have taken places on both linear and nonlinear model in 

Simulink model and showed in figure 3.4 and 3.5. 

 

Figure 3.4 Open Loop Simulation for Nonlinear Model 

 

According to the linear model definition, the difference between initial value, 

𝑈𝑠𝑠  and desired value, 𝑈 is considered as δ𝑈 is sent to the model. As a result, 𝛿𝑋 will 

be achieved after providing the value of δ𝑈 to the system. As a result, finally initial 

states, 𝑋𝑠𝑠 is added with 𝛿𝑋 to achieve desired states. Input and output can be defined 

by the equations as follows in equation (3.71) and (3.72): 

 𝑈𝑠 = 𝑈𝑠𝑠 + δ𝑈 (3.71) 
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 𝑋𝑠 = 𝑋𝑠𝑠 + δ𝑋 (3.72) 

 

Figure 3.5 Open Loop Simulation in Linear Model 

 

Open loop simulation on Euler angle representation 

Accordingly, an operating point at any hover position is chosen to go proceed on the 

open loop simulation for any linear system. Therefore, a control input, 𝑈𝑠𝑠= 

[𝑚𝑔, 0, 0, 0]𝑇 at any hover point has been chosen in figure 3.6 (a). It depicts that the 

deviation between linear and nonlinear model is zero at it was presumed. However, the 

input has been changed a minute than previous input as  𝑈𝑠 = [𝑚𝑔 +

0.1, 0.001, 0, 0.1]𝑇 and the consequence has been portrayed in figure 3.6 (b). It 

illustrates the behavior of linear and nonlinear models remain same until 2s and then 

the deviation starts. Hence, it is confirmed that the linear model at a certain operating 

can behave smoothly. 

Open loop simulation on Quaternion 

Similarly another two open simulations are accomplished in Quaternion designed model 

for both linear and nonlinear model of quadrotor where 𝑈𝑠 were considered as 

[𝑚𝑔, 0, 0, 0.0001]𝑇and [𝑚𝑔 + 0.001, 0, 0, 0.0001]𝑇 in order to check the compatibility 

of linear model with nonlinear model. Significantly, from figure 3.7 (b) it is found that 

δU δX 

Uss Xss 

Linear 

Model 
U 
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the behavior of linear model started to change after 1.5s because the operating point is 

different. In contrast, in figure 3.7 (a), linear model behaves very smoothly and almost 

the responses are same to nonlinear model as their operating points are same. 

 

(a) 

 

(b) 

Figure 3.6 δ𝑥, δ𝑦, δ𝑧 and δ𝜓 when (a) 𝑈𝑠= [𝑚𝑔, 0, 0, 0]𝑇 (b) 𝑈𝑠= [𝑚𝑔 +
0.1, 0.001, 0, 0.1]𝑇 in Euler angle 

 

 
(a) 

 
(b) 

Figure 3.7 δ𝑥, δ𝑦, δ𝑧 and δ𝜓 when (a) 𝑈= [𝑚𝑔, 0, 0, 0]𝑇 (b) 𝑈= [𝑚𝑔 +
0.001, 0, 0, 0.001]𝑇 in Quaternion 

 

3.6 CONTROLLER DESIGN 

The three different control techniques, PID, LQR and MPC for both Euler angle and 

quaternion orientations are developed as follows.  
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3.6.1 PD Controller 

PID control technique is a commonly used technique in both linear model and non-

linear system because of its simplicity to design. Here, the dynamic model of a 

quadcopter does not show any steady-state error and due to the reason, integrator part 

of PID controller has not been used necessarily. As the model offers second order 

equations, the equations are required to be integrated twice that automatically remove 

the steady-state error from the system. However, the general form of a PD controller 

can be mentioned by following equations (3.73) and (3.74). 

 𝑒(𝑡) =  𝑋𝑑 − 𝑋𝑎 (3.73) 

 
𝑈(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑

d

dt
𝑒(𝑡) 

(3.74) 

 

where, 𝑒(𝑡) symbolizes the error between desired states (𝑋𝑑) and actual states (𝑋𝑎), 𝐾𝑝 

denotes the proportional gain and 𝐾𝑑 is the derivative gain. A block diagram of PD 

controller has been depicted in figure 3.8. 

 

Figure 3.8 Block Diagram of PD controller 

 

 

There are several tuning method for PID controllers like Ziegler-Nichols 

method, Tyreus-Luyben method, Damped oscillation method, Cohen and Coon method, 

Fertik method, Ciancone and Marline method, Internal Model Control (IMC) and 

Minimum Error Integral Criteria (IAE, ISE, ITAE) method are considered where some 

are applied in closed loop and some are in open loop control system (Shahrokhi & 

Reference 

 

s 

System 
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Zomorrodi, 2013). Despite the PID tuning method, in most of the times, trial and error 

method are being used to deal with any nonlinear model (Padhee, 2014). 

As quadrotor is under-actuated system, only four states can be regulated at the 

same time by using PD controller wherein either position and yaw angle or attitude and 

only altitude can be the options.  

 

3.6.1.1 Attitude Mode in Euler angle 

Attitude mode means the three angles (i.e. roll, pitch and yaw) and the altitude control 

mode. According to the equations (3.75), and (3.77), the PD controller can be designed 

individually for roll, pitch, yaw control and altitude control. 

 

Figure 3.9 Block diagram of attitude mode for PD Controller in Euler Angle 

 

 

Roll, pitch, yaw control 

In order to control roll, pitch and yaw, three different PD controllers are required to be 

designed where 𝑈2, 𝑈3 and 𝑈4 are the control inputs for roll, pitch and yaw respectively 

as follows. 

𝑈2  = 𝐾𝑝,𝜙(𝜙𝑑 − 𝜙𝑎) + 𝐾𝑑,𝜙(�̇�𝑑 − �̇�𝑎) (3.75) 

𝑈3  = 𝐾𝑝,𝜃(𝜃𝑑 − 𝜃𝑎) + 𝐾𝑑,𝜃(�̇�𝑑 − �̇�𝑎) (3.76) 

𝑈4  = 𝐾𝑝,𝜓(𝜓𝑑 − 𝜓𝑎) + 𝐾𝑑,𝜓(�̇�𝑑 − �̇�𝑎) (3.77) 
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where, 

𝐾𝑝 = Proportional gain 

𝐾𝑑 = Derivative gain 

𝜙𝑑 , 𝜃𝑑 , 𝜓𝑑 = Desired roll, pitch and yaw angle respectively 

�̇�𝑑 , �̇�𝑑 , �̇�𝑑 = Desired roll, pitch and yaw angle rate of change respectively 

𝜙𝑎 , 𝜃𝑎, 𝜓𝑎 = Feedback roll, pitch and yaw angle respectively 

�̇�𝑎 , �̇�𝑎, �̇�𝑎 = Feedback roll, pitch and yaw angle rate of change respectively 

Altitude control 

Similarly, another PD controller was designed for altitude control that provides 𝑈1 . It 

has been formulated based on equation (3.78) and (3.32).  

 �̈�𝑑 = 𝐾𝑝(𝑧𝑑 − 𝑧𝑎) + 𝐾𝑑(�̇�𝑑 − �̇�𝑎) (3.78) 

 𝑈1 = 𝑚 [
𝑔 − (�̈�𝑑 +

𝑘𝑡𝑧

𝑚
�̇�𝑎)

cos𝜙cos𝜃
] (3.79) 

where,  

𝑧𝑑 = Desired altitude 

�̇�𝑑 = Desired altitude rate of change 

𝑧𝑎 = Feedback altitude 

�̇�𝑎 = Feedback altitude rate of change 

�̈�𝑑 = Desired acceleration along z-axis 

3.6.1.2 Attitude Mode in quaternion 

For attitude mode in quaternion, roll, pitch and yaw are considered in terms of 

quaternion.  Here, the error between desired quaternion and actual quaternion can be 

formulated using quaternion multiplication. As quaternion multiplication and algebraic 
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subtraction are two different methods, the design method of PD controller for 

quaternion is different from Euler angle orientation. A block diagram can depict it more 

comprehensively in figure 3.10. 

 

Figure 3.10 Block diagram of trajectory mode for PD Controller in Quaternion 

 

 

Roll, pitch and yaw control 

In quaternion, the control inputs are necessarily required to be decoupled into roll, pitch 

and yaw as like Euler angle orientation in order to give proper command to the motors. 

As a result, quaternion error is formulated by considering desired and current quaternion 

states as follows in equation (3.80) (Fresk & Nikolakopoulos, 2013). 

 𝑞𝑒 = 𝑞𝑑⨂𝑞𝑎
−1 (3.80) 

where,  

𝑞𝑒 = Quaternion Error 

𝑞𝑑 = Desired Quaternion 

𝑞𝑎 = Present Quaternion 

Equation (3.80) also can be elaborated by equation (3.81) in order to make it 

more comprehensible (Kehlenbeck, 2014) as follows. 
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 [

𝑞0,𝑒

𝑞1,𝑒

𝑞2,𝑒

𝑞3,𝑒

] = [

𝑞0,𝑑 𝑞1,𝑑 𝑞2,𝑑 𝑞3,𝑑

−𝑞1,𝑑 𝑞0,𝑑 𝑞3,𝑑 −𝑞2,𝑑

−𝑞2,𝑑 −𝑞3,𝑑 −𝑞0,𝑑 𝑞1,𝑑

−𝑞3,𝑑 𝑞2,𝑑 −𝑞1,𝑑 𝑞0,𝑑

] [

𝑞0,𝑎

𝑞1,𝑎

𝑞2,𝑎

𝑞3,𝑎

] (3.81) 

Then the control inputs for roll, pitch and yaw can be achieved by the following 

equation (3.82).  

 [
𝑈2

𝑈3

𝑈4

] = −𝐾𝑝,𝑞 [

𝑞1,𝑒

𝑞2,𝑒

𝑞3,𝑒

] − 𝐾𝑑,𝑞 [
𝑝
𝑞
𝑟
] (3.82) 

where,  

𝐾𝑝,𝑞 = Diagonal matrix for proportional gain  

𝐾𝑑,𝑞 = Diagonal matrix for derivative gain. 

The sign of 𝐾𝑝,𝑞 determines whether the quadrotor moves to the desired rotation 

angle in shortest direction or longest direction. As all the unit quaternions are squared 

to explain three dimensions, the sign of 𝐾𝑝,𝑞 is dependent on the sign of  𝑞0,𝑒 to confirm 

the rotation of quadcopter along with the possible shortest direction (Kehlenbeck, 2014; 

Wie, 2008).  

Altitude Control 

Altitude controller is designed by following equation (3.83) and (3.84) as like Euler 

angle orientation system. 

3.6.1.3 Trajectory Mode in Euler angle 

In trajectory mode, position along axes and yaw angle are taken into consideration for 

tracking. Here, roll and pitch angles are decoupled with position (x, y). Thus, four 

different PD controllers are applied to control the position of the quadrotor where two 

controllers are applied for position (x, y) and another two controllers are used for roll 

and pitch angle as shown in figure (3.11). Here, controller generates inputs to the system 
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model or dynamic model and the model transfers the feedback to the desired trajectory 

zone. 

 

 
 

Figure 3.11 Block diagram of trajectory mode for PD Controller in Euler Angle 

 

 

Position control (x, y) 

For position control, two PD controllers are designed for desired accelerations along x 

and y axes as follows while these two values are used later. 

 �̈�𝑑 = 𝐾𝑝(𝑥𝑑 − 𝑥𝑎) + 𝐾𝑑(�̇�𝑑 − �̇�𝑎) (3.83) 

 �̈�𝑑 = 𝐾𝑝(𝑦𝑑 − 𝑦𝑎) + 𝐾𝑑(�̇�𝑑 − �̇�𝑎) (3.84) 

Now in equation (3.30) and (3.31), the desired accelerations along x-axis, �̈�𝑑 

and y-axis, �̈�𝑑 are substituted by the acquired values from equation (3.83) and (3.84) in 

order to achieve desired pitch (𝜃𝑑) and roll (𝜙𝑑) angle as follows. 

 𝜃𝑑 = tan−1

[
 
 
 
 −cos𝜓 (�̈�𝑑 +

𝑘𝑡𝑥

𝑚 �̇�𝑎) − sin𝜓 (�̈�𝑑 +
𝑘𝑡𝑦

𝑚 �̇�𝑎)

𝑔 − (�̈�𝑑 +
𝑘𝑡𝑧

𝑚 �̇�𝑎)
]
 
 
 
 

 (3.85) 
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 𝜙𝑑 = tan−1

[
 
 
 
 
 (−sin𝜓 (�̈�𝑑 +

𝑘𝑡𝑥

𝑚 �̇�𝑎) + cos𝜓 (�̈�𝑑 +
𝑘𝑡𝑦

𝑚 �̇�𝑎)) cos𝜃𝑑

𝑔 − (�̈�𝑑 +
𝑘𝑡𝑧

𝑚 �̇�𝑎)

]
 
 
 
 
 

 (3.86) 

Then by following equation (3.85) and (3.86), roll and pitch can be controlled 

by using PD controllers.  

Altitude control 

For altitude control in trajectory mode, equation (3.78) and (3.79) are used as it is 

controlled in attitude mode. 

Yaw or heading control  

In trajectory mode, equation (3.77) is used to control yaw or heading of the quadrotor 

as it is formulated in attitude mode. 

3.6.1.4 Trajectory Mode in quaternion 

For trajectory mode in quaternion system, almost similar approach to Euler angle 

system has been adopted except the quaternion error segment. In trajectory mode, 

desired position, (x, y, z) and a quaternion element, 𝑞3 are considered as known values 

where 𝑞3 is normally responsible for yaw movement. In trajectory mode, two different 

controllers are chosen where one is for position control and another for attitude control 

of quadrotor. The block diagram in figure 3.12 may illustrate the complete idea for 

trajectory mode. 

In figure 3.12, initially desired position 𝑥𝑑, 𝑦𝑑, 𝑧𝑑 and 𝑞3,𝑑 are known where 

𝑞0,𝑑 and 𝑞3,𝑑 are responsible for the yaw movement. Then desired quaternion 

elements 𝑞0,𝑑, 𝑞1,𝑑, 𝑞2,𝑑 and 𝑈1 can be solved from equation (3.39-3.41) as follows:. 
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Figure 3.12 Block diagram of trajectory mode for PD Controller in Quaternion 

 

 

Here, initially desired position (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑) and quaternion element 𝑞3,𝑑 are 

known where 𝑞0,𝑑 and 𝑞3,𝑑 are responsible for the yaw movement. Then desired 

quaternion elements, (𝑞0,𝑑, 𝑞1,𝑑, 𝑞2,𝑑) and control input 𝑈1 can be solved from equation 

(3.39-3.41) as follows. 

𝑞0,𝑑 = √
1

2
(1 +

𝑔 + �̇�

�̈�𝑑
2 + �̈�𝑑

2 + (�̈�𝑑 + 𝑔)2
) − 𝑞3,𝑑

2 (3.87) 

𝑈1 =
𝑚(𝑔 − �̈�𝑑)

2(𝑞0,𝑑
2 + 𝑞3,𝑑

2)2 − 1
 (3.88) 

𝑞1,𝑑 =
1 − 2(𝑞0,𝑑

2 + 𝑞3,𝑑
2)

2(𝑞0,𝑑
2 + 𝑞3,𝑑

2)(𝑔 − �̇�𝑑)
[𝑞0,𝑑 (�̈�𝑑 +

𝑘𝑡𝑦

𝑚
�̇�𝑎) − 𝑞3,𝑑 (�̈�𝑑 +

𝑘𝑡𝑥

𝑚
�̇�𝑎)] (3.89) 

𝑞2,𝑑 =
1 − 2(𝑞0

2 + 𝑞3
2)

2(𝑞0,𝑑
2 + 𝑞3,𝑑

2)(𝑔 − �̇�𝑑)
[𝑞0,𝑑 (�̈�𝑑 +

𝑘𝑡𝑥

𝑚
�̇�𝑎) + 𝑞3,𝑑 (�̈�𝑑 +

𝑘𝑡𝑦

𝑚
�̇�𝑎)] 

(3.90) 

From equation (3.87), (3.89) and (3.90), three quaternion elements 𝑞0,𝑑, 𝑞1,𝑑 and 

𝑞2,𝑑 have been formulated. Hence, initial desired trajectory ( 𝑥𝑑, 𝑦𝑑, 𝑧𝑑 and 𝑞3,𝑑) 

transformed into new trajectory (𝑞0,𝑑, 𝑞1,𝑑, 𝑞2,𝑑, 𝑞3,𝑑,𝑧𝑑)  that is similar to attitude mode. 

This new trajectory will then follow the exactly same procedure as aforementioned in 

section 3.6.1.2. 
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3.6.2 LQR CONTROLLER 

LQR is one of the most popular optimal control techniques for quadrotor. LQR is 

considered as linear controller and is developed based on linear model of the system. 

The controller follow Cost function minimizing approach also known as Optimal 

control method in order to compute the states of the system.   

Similar to PD controller, LQR has been applied in both Euler and Quaternion 

orientation system that has been described as follows.  

3.6.2.1 LQR in Euler angle system 

According to the definition, LQR needs a linearized model that has been already derived 

before from equation (3.66-3.67). Since it is a generalized linear model, an operating 

point is required to be chosen to use the control technique while hovering with a heading 

angle is chosen as an operating point for the quadrotor.  

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −
𝑘𝑡𝑥

𝑚
0 0 −𝑔𝑠𝜓𝑇 −𝑔𝑐𝜓𝑇 0 0 0 0

0 0 0 0 −
𝑘𝑡𝑦

𝑚
0 𝑔𝑐𝜓𝑇 𝑔𝑠𝜓𝑇 0 0 0 0

0 0 0 0 0 −
𝑘𝑡𝑧

𝑚
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 −
𝑘𝑡𝑥

𝐼𝑥
0 0

0 0 0 0 0 0 0 1 0 0 −
𝑘𝑡𝑦

𝐼𝑦
0

0 0 0 0 0 0 0 0 1 0 0 −
𝑘𝑡𝑧

𝐼𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.91) 

 

Equation (3.91) and (3.92) offers matrices A and B which are derived based on a general 

hovering point and it can be applicable at any operating point in hovering condition. 
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𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0
𝑙

𝐼𝑥
0 0

0 0
𝑙

𝐼𝑥
0

0 0 0
𝑙

𝐼𝑥]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.92) 

 

If the model is linearized at an nominal point (𝑋𝑠𝑠, 𝑈𝑠𝑠) where 𝑋𝑠𝑠  =

 [𝑥𝑠𝑠, 𝑦𝑠𝑠, 𝑧𝑠𝑠, 𝜓𝑠𝑠 ]
𝑇 and others states are considered as zero with 𝑈𝑠𝑠 = [𝑚𝑔, 0, 0, 0]𝑇 

where,  

 δ𝑋 = 𝑋𝑑 − 𝑋𝑎 (3.93) 

 𝑈 = 𝑈𝑠𝑠 + δ𝑈 (3.94) 

 𝑋 = 𝑋𝑠𝑠 + δ𝑋 (3.95) 

Now according to the control approach of LQR, a feedback control is required 

to be designed by following equation (3.96). 

 𝑈 = −𝐾𝛿𝑋𝑠 + 𝑈𝑠𝑠 (3.96) 

Where, K is the feedback gain matrix.  

The gain matrix 𝐾 has been calculated by minimizing the cost function as 

follows. 

 
𝐽 =  ∫ (δ𝑋𝑠𝑄δ𝑋𝑠 + δ𝑈𝑅δ𝑈)𝑑𝑡

∞

0

 
(3.97) 

where, Q is considered as a semi-positive definite matrix of 𝑚 × 𝑚 and R is a positive 

definite matrix of 𝑚 × 𝑛 wherein m symbolizes number of states and n is considered as 

the number of control input. 
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Therefore, the closed loop control system can appears as follows in equation 

(3.98) 

 δ�̇�𝑠 = (𝐴 − 𝐵𝐾)δ𝑋𝑠 (3.98) 

where, 𝐾 has been calculated using Q and R matrices.  

Figure 3.13 shows a Simulink model of quadrotor linear dynamic model with 

LQR control approach. 

 

 

Figure 3.13 Block diagram for linear model with LQR 

 

 

LQR also can be applied to nonlinear model but the approach should be a minute 

different from the approach to linear model. For nonlinear approach, equation (3.94) 

has been used for control input, U. In figure 3.14, a nonlinear model for quadrotor is 

shown in block diagram using LQR approach. 

 

 

Figure 3.14 Block diagram for nonlinear model with LQR 
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3.6.2.2 LQR in Quaternion 

To apply LQR control approach in quaternion orientation model, the nonlinear model 

should be linearized as like linearized model in Euler angle orientation. The linear 

model for quaternion system has been stated before in equation (3.66) and (3.67). Here 

equation (3.99) and (3.100) shows the A and B matrices for linear model in quaternion. 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 −
𝑘𝑡𝑥

𝑚
0 0 0 −2𝑔𝑞3 −2𝑔𝑞0 0 0 0 0

0 0 0 0 −
𝑘𝑡𝑦

𝑚
0 0 2𝑔𝑞0 −2𝑔𝑞3 0 0 0 0

0 0 0 0 0 −
𝑘𝑡𝑧

𝑚
−4𝑔𝑞0 0 0 −4𝑔𝑞3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
−𝑞3

2

0 0 0 0 0 0 0 0 0 0
𝑞0

2
−

𝑞3

2
0

0 0 0 0 0 0 0 0 0 0
𝑞3

2

𝑞0

2
0

0 0 0 0 0 0 0 0 0 0 0 0
𝑞0

2

0 0 0 0 0 0 0 1 0 0 −
𝑘𝑟𝑥

𝐼𝑥
0 0

0 0 0 0 0 0 0 0 1 0 0 −
𝑘𝑟𝑦

𝐼𝑦
0

0 0 0 0 0 0 0 0 0 1 0 0 −
𝑘𝑟𝑧

𝐼𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.99) 

 

𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
(2𝑞0

2 + 2𝑞3
2 − 1)

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
𝑙

𝐼𝑥
0 0

0 0
𝑙

𝐼𝑥
0

0 0 0
𝑙

𝐼𝑥]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.100) 
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The block diagram for linear model in quaternion using LQR has been illustrated 

figure 3.15. 

 

Figure 3.15 Block diagram for linear model with LQR in Quaternion 

3.6.3 MPC CONTROLLER 

As the control system of a quadrotor requires multiple input and multiple output 

(MIMO) and disturbances may influence system performances in case of outdoor 

applications, it needs a controller that can deal with both conditions. Moreover, it is 

quite impossible to employ constraints directly on the actual control signals to get 

optimized solutions because of coupling. Hence, Model Predictive Control (MPC) 

technique can be an option to overcome all of these problems. 

MPC also known as receding horizon control (RHC) is a control approach that 

comprises a systematic algorithm. Here, the dynamic model of the system is formulated 

under a finite, moving horizon and closed loop control problem. It has the capability to 

use constraints in both control inputs and outputs on the system during the design 

process. According to its working principle, it predicts a number of outputs of the 
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system so that it can generate an optimized control input for the system to reach the 

reference trajectory.  

The optimization problem is calculated for each sampling time interval. The 

immediate optimized control signal is applied in the system until next sampling time 

interval. The process is repeated for each sampling time interval. In this section, the 

linear MPC control algorithm is described briefly. 

Plant model and prediction horizon 

A nonlinear system can be written in the form 

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (3.101) 

Where, 𝑥(𝑡)𝜖𝑅𝑛  denotes the states of the system and 𝑢(𝑡)𝜖𝑅𝑚 denotes system 

inputs. 

So, the nonlinear system can be designed into a linear discrete-time system 

around a nominal point where as nominal states and nominal control inputs are 𝑥𝑇 and 

𝑢𝑇 as follows where quadcopter dynamic model was linearized at hover condition. 

 ∆𝑥𝑘+1+𝑖 = 𝐴∆𝑥𝑘+𝑖 + 𝐵∆𝑢𝑘+𝑖 (3.102) 

 ∆𝑦𝑘+𝑖 = 𝐶∆𝑥𝑘+𝑖 + 𝐷∆𝑢𝑘+𝑖 (3.103) 

Where, 𝑖 =  1, 2, 3, …, N 

∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑇 

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑇 

k is sample time, 𝐴 𝜖𝑅𝑛×𝑛 is the state matrix, 𝐵𝜖𝑅𝑛×𝑚 is input matrix, 𝑦𝜖𝑅𝑝 is 

system outputs, 𝐶𝜖𝑅𝑝×𝑛 is output matrix and 𝐷 𝜖𝑅𝑝×𝑚 is feedforward matrix. For 

quadcopter we could know 𝑛 = 12 and 𝑚 = 4. 

To reach the desired states, a prediction horizon, N is required to be determined 

so that controller can predict a number of future states. A state observer with an 
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estimator is also required to be implemented in the controller to predict the future states 

while the estimator predicts the future behavior of the system. A Linear Quadratic 

Estimator is applied for the algorithm.  

Now, by expanding equation (3.102-3.103), the future states and outputs can be 

achieved depending on initial states and future inputs as follows.  

∆𝑥𝑘+1 = 𝐴∆𝑥𝑘 + 𝐵∆𝑢𝑘 

                                  = 𝐴(𝐴∆𝑥𝑘−1 + 𝐵∆𝑢𝑘−1) + 𝐵∆𝑢𝑘+1 

                                = 𝐴2∆𝑥𝑘−1 + 𝐴𝐵∆𝑢𝑘−1 + 𝐵∆𝑢𝑘+1 

⋮ 

 

∆𝑥𝑘+𝑁 = 𝐴𝑁∆𝑥𝑘 + 𝐴𝑁−1𝐵∆𝑢𝑘 + 𝐴𝑁−2𝐵∆𝑢𝑘+1 + ⋯+ 𝐴𝐵∆𝑢𝑘+𝑁−2

+ 𝐵∆𝑢𝑘+𝑁−1 (3.104) 

Similarly, the system outputs can be derived as follows from equation (4.38). 

∆𝑦𝑘+𝑁 = 𝐶𝐴𝑁∆𝑥𝑘 + 𝐶(𝐴𝑁−1𝐵∆𝑢𝑘 + 𝐴𝑁−2𝐵∆𝑢𝑘+1 + ⋯+

𝐴𝐵∆𝑢𝑘+𝑁−2 + 𝐵∆𝑢𝑘+𝑁−1) 

(3.105) 

Therefore, the equations can be written in matrix form as follows. 

 

(

 
 

∆𝑥𝑘

∆𝑥𝑘+1

∆𝑥𝑘+2

⋮
∆𝑥𝑘+𝑁−1)

 
 

=

(

 
 

𝐼
𝐴
𝐴2

⋮
𝐴𝑁−1)

 
 

∆𝑥𝑘

+

(

 
 

0 0 ⋯ 0 0
𝐵 0 ⋯ 0 0
𝐴𝐵 𝐵 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐴𝑁−2𝐵 𝐴𝑁−3𝐵 ⋯ 𝐵 0)

 
 

(

 
 

∆𝑢𝑘

∆𝑢𝑘+1

∆𝑢𝑘+2

⋮
∆𝑢𝑘+𝑁−1)

 
 

 

(3.106) 
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(

 
 

∆𝑦𝑘

∆𝑦𝑘+1

∆𝑦𝑘+2

⋮
∆𝑦𝑘+𝑁−1)

 
 

=

(

 
 

𝐶 0 0 ⋯ 0
0 𝐶 0 ⋯ 0
0 0 𝐶 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐶)

 
 

(

 
 

∆𝑥𝑘

∆𝑥𝑘+1

∆𝑥𝑘+2

⋮
∆𝑥𝑘+𝑁−1)

 
 

+

(

 
 

𝐷 0 0 ⋯ 0
0 𝐷 0 ⋯ 0
0 0 𝐷 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐷)

 
 

(

 
 

∆𝑢𝑘

∆𝑢𝑘+1

∆𝑢𝑘+2

⋮
∆𝑢𝑘+𝑁−1)

 
 

 

(3.107) 

 

In short form, we can write 

 ∆𝑋𝑘 = 𝐴𝑚∆𝑥𝑘 + 𝐵𝑚∆𝑢𝑘 (3.108) 

 ∆𝑌𝑘 = 𝐶𝑚∆𝑥𝑘 + 𝐷𝑚∆𝑢𝑘 (3.109) 

As D = 0 in most of the cases, the equation (3.109) can be written as 

 ∆𝑌𝑘 = 𝐶𝑚∆𝑥𝑘 (3.110) 

Control Design 

The MPC technique must have a cost function in its control algorithm with a view to 

calculating the optimal solution at every sampling time interval. The cost function has 

to be designed in such a manner that the predicted outputs are directed towards the 

desired states. Here, the cost function is being minimized by the norm of the difference 

between the current outputs and desired trajectory and the norms of motor inputs as 

follows (Bemporad et al., 2017b). In addition, when it becomes an issue to find out the 

difference between quaternion outputs and desired trajectories are considered in order 

to get the cost function, quaternion error between quaternion outputs and desired 

trajectories are considered in lieu of normal algebraic subtraction as aforementioned in 

previous section. 

𝐽(∆𝑥, ∆𝑢) = (∆𝑢𝑘)
𝑇�̂�𝑢

2
(∆𝑢𝑘) + (∆𝑌𝑘 − ∆𝑌𝑘

𝑟)𝑇�̂�𝑦
2
(∆𝑌𝑘 − ∆𝑌𝑘

𝑟) (3.111) 

where,  
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�̂�𝑢 = 

[
 
 
 
 
 
 
 
 
 
𝑊𝑢|0,1 0 ⋯ 0 ⋯ 0 0 ⋯ 0

0 𝑊𝑢|0,2 ⋯ 0 ⋱ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑊𝑢|0,𝑚 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 ⋯ 𝑊𝑢|𝑁−1,1 0 ⋯ 0

0 0 ⋯ 0 ⋯ 0 𝑊𝑢|𝑁−1,2 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 ⋯ 0 0 ⋯ 𝑊𝑢|𝑁−1,𝑚]

 
 
 
 
 
 
 
 
 

 

 

�̂�𝑦 = 

[
 
 
 
 
 
 
 
 
 
𝑊𝑦|0,1 0 ⋯ 0 ⋯ 0 0 ⋯ 0

0 𝑊𝑦|0,2 ⋯ 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑊𝑦|0,𝑚 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 ⋯ 𝑊𝑦|𝑁−1,1 0 ⋯ 0

0 0 ⋯ 0 ⋯ 0 𝑊𝑦|𝑁−1,2 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 ⋯ 0 0 ⋯ 𝑊𝑦|𝑁−1,𝑚]

 
 
 
 
 
 
 
 
 

 

Quadratic Programming 

As the cost function is in quadratic form, a quadratic programming can be applied to 

solve the optimization problem. The main purpose of the quadratic programming is to 

reduce the cost function 𝐽(∆𝑥, ∆𝑢) by finding out a feasible search direction ∆𝑢 

(Bemporad et al., 2017a). 

Input and constraint handling 

Constraint handling capability is an advantage of MPC formulation. It is necessary for 

quadrotor to handle the constraints in both the control efforts and magnitude of the 

angles to have proper stability of it. 

Input constraints 

During the designing of the quadrotor, it is important to apply constraint at the force of 

each motor so that it will behave like a realistic model. As a result, the presence of an 
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upper, 𝑢𝑢𝑏 bound and lower bound, 𝑢𝑙𝑏  are very obvious at control inputs that can be 

expressed as 

 𝑢𝑙𝑏 ≤ 𝑢𝑘+𝑖 ≤ 𝑢𝑢𝑏 for 𝑖 = 0, 1, 2, … ,𝑁 − 1 (3.112) 

As dynamic model is linearized around a certain operating point, the MPC 

approach solves the perturbed control inputs for the linearized model as represented 

𝑢𝑘+𝑖 = ∆𝑢𝑇 + ∆𝑢𝑘+𝑖. Therefore, equation 3.112 can be substituted as 

𝑢𝑙𝑏 ≤ ∆𝑢𝑇 + ∆𝑢𝑘+𝑖 ≤ 𝑢𝑢𝑏 

 𝑢𝑙𝑏 − ∆𝑢𝑇 ≤ ∆𝑢𝑘+𝑖 ≤ 𝑢𝑢𝑏 − ∆𝑢𝑇 (3.113) 

However, equation 3.113 also can be expressed in matrix form as follows. 

 
[

𝐼𝑚×𝑚

−𝐼𝑚×𝑚
] ∆𝑢𝑘+𝑖 ≤ [

𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
] 

(3.114) 

where 𝐼𝑚×𝑚 is an identity matrix. 

Besides, equation (3.115) is the representation of simple form of equation as 

follows. 

 𝐼𝑢∆𝑢𝑘 ≤ ∆𝑢𝑏 (3.115) 

where,  

𝐼𝑢 =

[
 
 
 
 
 
 [

𝐼𝑚×𝑚

−𝐼𝑚×𝑚
] 0 ⋯ 0

0 [
𝐼𝑚×𝑚

−𝐼𝑚×𝑚
] ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ [
𝐼𝑚×𝑚

−𝐼𝑚×𝑚
]
]
 
 
 
 
 
 

 

∆𝑢𝑏 = 

[
 
 
 
 
 
 [

𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
]

[
𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
]

⋮

[
𝑢𝑢𝑏 − ∆𝑢𝑇

−(𝑢𝑙𝑏 − ∆𝑢𝑇)
]
]
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Output and states constraints 

Sometimes it is also necessary to apply a limit on the any states in order to avoid any 

unwanted situation. Similar to input constraints, outputs can also be delimited by upper 

bound, 𝑧𝑢𝑏 and output bound, 𝑧𝑙𝑏 as follows. 

 𝑧𝑙𝑏 ≤ 𝐶𝑧𝑥𝑘+𝑖 ≤ 𝑧𝑢𝑏; 𝑖 = 0, 1, 2, 3, … . , 𝑁 − 1 (3.116) 

As we get, 

𝑥𝑘+𝑖 = 𝑥𝑇 + ∆𝑥𝑘+𝑖 

So,   

𝑧𝑙𝑏 ≤ 𝐶𝑧(𝑥𝑇 + ∆𝑥𝑘+𝑖) ≤ 𝑧𝑢𝑏 

𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇 ≤ 𝐶𝑧∆𝑥𝑘+𝑖 ≤ 𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇 

It is also shown in matrix form as follows. 

[
𝐶𝑧

−𝐶𝑧
] ≤ [

𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
] 

So, from equation (3.108), the constraints can be described as follows where 

∆𝑋𝑘 will be substituted. 

Γ𝑧(𝐴𝑚∆𝑥𝑘 + 𝐵𝑚∆𝑢𝑘) ≤ ∆𝑧𝑏 

Where,  

Γ𝑧 =

[
 
 
 
 
 
 [

𝐶𝑧

−𝐶𝑧
] 0 ⋯ 0

0 [
𝐶𝑧

−𝐶𝑧
] ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ [
𝐶𝑧

−𝐶𝑧
]
]
 
 
 
 
 
 

 

 ∆𝑧𝑏 =

[
 
 
 
 
 
 [

𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]

[
𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]

⋮

[
𝑧𝑢𝑏 − 𝐶𝑧𝑥𝑇

−(𝑧𝑙𝑏 − 𝐶𝑧𝑥𝑇)
]
]
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Combined Input and Output State Constraints 

The control input and output constraints can be described by one single equation as 

follows. 

𝑀𝑢∆𝑢𝑘 ≤ ∆𝑢𝑏 

Γ𝑧(𝐴𝑚∆𝑥𝑘 + 𝐵𝑚∆𝑢𝑘) ≤ ∆𝑧𝑏 

 Γ𝑧𝐵𝑚∆𝑢𝑘 ≤ ∆𝑧𝑏 − Γ𝑧𝐴𝑚∆𝑥𝑘 

So, the following equation can describe these two equations at the same time. 

Π∆𝑢𝑘 ≤ Υ 

Where, 

Π = [
𝑀𝑢

Γ𝑧𝐵𝑚
] 

Υ = [
∆𝑢𝑏

∆𝑧𝑏 − Γ𝑧𝐴𝑚∆𝑥𝑘
] 

A flow chart can be shown that may carry out the complete concept of MPC 

(Tule, 2014). 

 

Figure 3.16 A Flowchart of MPC Process 

 

3.7 CHAPTER SUMMARY 

This chapter introduces with the dynamic model design of quadrotor, rotor dynamics 

and control algorithm development. Here, Euler angle and Quaternion orientation 

systems have been adopted in order to design the dynamic model of quadrotor. Rotor 
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dynamics has been discussed also to comprehend the complete working procedure. 

Different control techniques have their own specialties with their unique algorithms and 

each control techniques is taken into consideration based on the type of applications of 

quadrotor. Significantly, MPC can be a suitable controller for outdoor applications 

where uncertainty may influence the model. Apart from that, it can ensure the motor 

safety by offering the feature of constraints at control inputs.   
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter concentrates on the performance evaluation of the controller based on 

several situations like at certain operating point, helix and circular trajectories, and 

trajectories with disturbances. The performance evaluations have been performed based 

on MATLAB and Simulink environment. Here, several factors have been considered 

for performance evaluation that has been described elaborately in this chapter.  

4.1 CONTROLLER PERFORMANCE AT CERTAIN POINT 

This section focuses on the performances of the aforementioned controllers at a certain 

operating point that is considered as desired trajectory point. The performance of PD, 

LQR and MPC controllers in two different orientation systems as Euler angle 

representation and Quaternion have been demonstrated respectively.  

 

4.1.1 PD Controller Simulation 

4.1.1.1 Simulation for Euler angle orientation 

The performance of PD controller depends on choosing proper gains. Therefore, it is 

one of the most difficult part to choose proper gains for PD controller. Here, Simulink 

optimization toolbox has been used to find out the proportional and derivative gains of 

PD controller. This optimization toolbox is dependent on gradient indent approach for 

optimization.  

The control gains that were considered for altitude controller are 𝐾𝑝= 7.495 and 

𝐾𝑑 = 5. The optimization toolbox works on finding out the least possible error for 
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altitude controller. By running the closed-loop simulation, settling time is found as 

1.7681 sec and overshoot is found 0.0679% for the desired movement along z-axis. 

 Similarly, position and attitude controllers’ gains are also generated using 

optimization toolbox. Table 4.1 and 4.2 illustrates the gains with settling time and 

overshoot along the three axes.  

Table 4.1: PD controller performance for Euler orientation 

 

 Desired Value 𝑲𝒑 𝑲𝒅 Settling Time (sec) Overshoot (%) 

x 3 2.1 2.8 4.0858 0 

y 2 2.15 2.5 3.0730 0.0037 

z -5 7.495 5 1.7681 0.0679 

𝜓 15o 5 1.4 1.1497 2.9750 

 

The gains for 𝜙 and θ are given in table 4.2. 

Table 4.2: Gain for 𝜙 and 𝜃 

 

 𝑲𝒑 𝑲𝒅 

𝜃 2.1 2.8 

𝜙 2.15 2.5 

 

Here, the maximum angular speed of a motor is considered 600 rad/s 

(Bouabdallah, 2007). Therefore, the ranges for different control inputs (i.e. 

𝑈1, 𝑈2, 𝑈3, 𝑈4) can be defined based on the considered angular speed of each motor from 

equation (3.58-3.61)  as follows: 

0˂ 𝑈1˂45.0720 

−11.2680˂𝑈2 ˂11.2680 

−11.2680˂ 𝑈3˂11.2680 

−0.54˂ 𝑈4 ˂0.54 
 



 

77 

The control effort to the system and the output of the system has also been 

demonstrated in figures 4.1 and 4.2 respectively.  

 

 

(a) Control Input, 𝑈1 

 

 

(b) Control Input, 𝑈2 

 

 

(c) Control Input, 𝑈3 

 

(d) Control Input, 𝑈4 

Figure 4.1 Control Inputs of PD controller in Euler angle orientation 

 

From figures 4.1 and 4.2, it is found that control inputs maintained the ranges 

and it could successfully achieve the trajectory. However, figure 4.2 shows the direction 

of z is negative because N-E-D coordinate system has been considered in this work as 

aforementioned. 
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(a) x vs t 

 

 

(b) y vs t 

 

 

(c) z vs t 

 

(d) 𝜓 vs t 

 

Figure 4.2 PD controller simulation response in Euler orientation 

 

4.1.1.2 Simulation for Quaternion orientation 

In quaternion orientation, similar procedures have been followed like Euler angle 

orientation. The gains 𝐾𝑝 and 𝐾𝑑 for position and attitude along with settling time and 

overshoot have been stated in tables 4.3 and 4.4.  

 Table 4.3 and 4.4 describes that PD controller could offer promising 

performance in settling time while in overshoot, significantly along y-axis, it failed to 

maintain the considerable performance. 
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Table 4.3: PD controller performance for Quaternion orientation 

 

 Desired Value 𝑲𝒑 𝑲𝒅 Settling Time (sec) Overshoot (%) 

x 3 0.7 0.8 2.5943 1.7406 

y 2 0.6 0.8 2.6587 13.1248 

z -5 550 35 2.3158 2.7858 

𝑞3 0.132 (≈15o) 10 2 1.4479 4.2522 

 

The gains for 𝑞1and 𝑞2 are given in table 4.4. 

Table 4.4: Gains for 𝑞1 and 𝑞2 

 𝑲𝒑 𝑲𝒅 

𝑞1 10 2 

𝑞2 10 1 

 

Figure 4.3 demonstrates the control inputs to the system. According to the requirement 

of this work,  0˂ 𝑈1˂45.0720 is the range for control input 𝑈1. Notably, figure 4.3 (a), 

shows that PD controller fails to maintain the range for the control input 𝑈1. Apart from 

that, it offers some chattering in control input 𝑈4 that is hazardous for motor. Therefore, 

PD is not able to satiate the requirements significantly at control inputs that have been 

considered in this work. 

 

 

(a) Control Input, 𝑈1 

 

(b) Control Input, 𝑈2 
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(c) Control Input, 𝑈3 

 

(d) Control Input, 𝑈4 

Figure 4.3 Control Inputs of PD controller in Quaternion orientation 

 

Figure 4.4 confirms that PD controller reach the desired point though the 

overshoot along y-axis is very high. Table 4.1 and 4.3 indicates that PD controller in 

quaternion orientation can offer improved performance especially for setting time. On 

the other hand, it cannot ensure better performance for overshoot when the system 

follows quaternion orientation.  

4.1.2 LQR Controller Simulation 

4.1.2.1 Simulation for Euler angle orientation 

In LQR controller, the same desired values are considered as for PD controller. The 

values of Q and R matrices have been stated in table 4.5 and the performance of the 

system is demonstrated in table 4.6.  

From table 4.6, it is notable that the overshoots along x, y and z-axes are zeros. 

In addition, settling time along the axes are also very small compared to PD controller. 

Noted that Q and R matrices are chosen to follow the control input constraints by proper 

trade-off. 
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(a) x vs t 

 

 

 

 
 

(b) y vs t 

 
 

(c) z vs t 

 

 
 

(d) 𝑞3 vs t 

Figure 4.4 PD controller simulation response in Quaternion orientation 

 

 

Table 4.5: Q and R matrix for LQR in Euler angle orientation 

  
Q R 

[
 
 
 
 
 
 
 
 
 
 
 
10 0 0 0 0 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 15 0 0 0 0 0 0
0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 20 0 0 0 0
0 0 0 0 0 0 0 0 35 0 0 0
0 0 0 0 0 0 0 0 0 85 0 0
0 0 0 0 0 0 0 0 0 0 5 0
0 0 0 0 0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

 [

1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

] 
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Table 4.6: LQR performance for Euler angle orientation  

 

 Desired Value Settling Time (sec) Overshoot (%) 

x 3 2.1634 0 

y 2 1.8290 0 

z -5 1.8496 0 

𝜓 15o 0.5992 3.0365 

 

Figure 4.5 illustrates the control input for LQR controller. As Q and R matrices 

have been chosen considering constraints, the control inputs have maintained the limits. 

LQR needs very high control effort and it takes longer time to settle down compared to 

PD controller. 

 
 

(a) Control Input, 𝑈1 

 

 
 

(b) Control Input, 𝑈2 

 

 
 

(c) Control Input, 𝑈3 

 
 

(d) Control Input, 𝑈4 

 

Figure 4.5 Control Inputs for LQR in Euler angle orientation 
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(a) 𝑥 vs t 

 

(b) 𝑦 vs t 

 

(c) 𝑧 vs t 

 

(d) 𝜓 vs t 

Figure 4.6 LQR simulation response in Euler angle orientation 

 

Figure 4.6 shows that LQR performs well in case of settling time comparing to 

PD controller. In addition, it confirms zero overshoot along the axes also. 

 

4.1.2.2 Simulation for Quaternion orientation 

Here, LQR controller is designed for quaternion linear model. Q and R matrices are 

shown in table 4.7. Table 4.8 depicts the performance of the LQR at the same desired 

value.  

Table 4.7: Q and R matrix for LQR in Quaternion orientation 

 
Q R 

𝑰𝟏𝟐×𝟏𝟐 𝐼4×4 
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Table 4.8 LQR performance for Quaternion orientation 

 

 Desired Value Settling Time (sec) Overshoot (%) 

x 3 4.6274 0 

y 2 3.992 0 

z -5 4.0933 0 

𝑞3 0.131 (≈15o) 3.5380 0.006 

 

 

 

 

(a) 𝑥 vs t 

 

 

(b) 𝑦 vs t 

 

 

(c) 𝑧 vs t 

 

(d) 𝜓 vs t 

Figure 4.7 LQR simulation response in Quaternion orientation 

From table 4.8 and figure 4.7, it is found that LQR ensures significant 

performance especially in overshoot while in settling time, it offers poor performance 

comparative to PD controller.  
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Figure 4.8 depicts that control input 𝑈1 starts from 10N in LQR while for PD 

controller, it starts from 90N. It implies that PD controller effort requires nine fold of 

LQR. Therefore, LQR is more efficient in the extent of control input though the output 

performance of LQR is poorer than PD controller. 

 

 
(a) Control Input, 𝑈1 

 

 
(b) Control Input, 𝑈2 

 

 
 

(c) Control Input, 𝑈3 

 
 

(d) Control Input, 𝑈4 

 

Figure 4.8 Control Inputs for LQR in Quaternion orientation 

 

4.1.3 MPC Controller Simulation 

4.1.3.1 Simulation for Euler angle orientation 

As the dynamics of the quadrotor is nonlinear, equations are linearized around hovering 

condition. For this study, prediction horizon, N = 20, control horizon, M = 2, and 
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sampling time, Ts= 0.25 are considered after several initial simulations based on two 

factors such overshoot and settling time. The effects of different N along x, y and z-

axes on settling time and overshoot are shown in figures 4.9 and 4.10. As N increases, 

settling time increases and overshoot decreases. Figure 4.10 shows the impact of N 

based on each axis separately. 

Based on the comparison among figure 4.5, 4.8 and 4.11, significantly it is found 

that MPC requires less control effort compared to other two controllers to achieve the 

same desired position.  

 

 
(a) Settling time vs N 

 
(b) Overshoot vs N 

 

Figure 4.9 Effects of N on (a) settling time and (b) overshoot 

 

In the meanwhile, table 4.9 depicts MPC needs a few seconds more time to 

subdue the signal because of its continual optimization process although it is able to 

maintain acceptable overshoot for all four states.  Moreover, it maintains the limits of 

control inputs accordingly. 

Table 4.9: MPC performance in Euler angle orientation 

 

 Desired Value Settling Time (sec) Overshoot (%) 

x 3 6.9345 2.2619 

y 2 8.4738 2.7672 

z -5 2.8177 0.0200 

𝜓 15o 0.5589 1.2149 
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(a) 

 

(b) 

 
Figure 4.10 Effects of N on (a) x, (b) y and (c) z 

 

 

 

 

(a) Control Input, 𝑈1 

 

 
 

(b) Control Input, 𝑈2 
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(c) Control Input, 𝑈3 

 

(d) Control Input, 𝑈4 

Figure 4.11 Control Inputs for MPC in Euler angle orientation 

 

4.1.3.2 Simulation for Quaternion orientation 

In quaternion, the nonlinear model is linearized around hover condition. In order to 

achieve the best performance, the prediction horizon, N=20, control horizon, M=2, 

sampling time, Ts= 0.25 and proper weight matrices (see in Appendix C) are used.  

 

Table 4.10 MPC performance in Quaternion orientation 

 

 Desired Value Settling time (sec) Overshoot (%) 

x 3 4.4512 1.6351 

y 2 8.1231 3.9754 

z -5 4.9083 2.2303 

𝒒𝟑 0.131 (≈15o) 1.8986 0.2519 

 

Table 4.10 and figure 4.13 describe the performance of the MPC controller in 

quaternion orientation. The settling time for MPC is the longest compared to other two 

controllers. On the other hand, the performance of MPC in overshoot for all the states 

are significantly better. 
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(a) 𝑥 vs t 

 

(b) 𝑦 vs t 

 

(c) 𝑧 vs t 

 

(d) 𝑞3 vs t 

Figure 4.12 MPC simulation response in Quaternion orientation  

 

 

Figure 4.13 shows that the generated control efforts by MPC controllers are the 

least than the other two controllers, which are safe for the motors and it can make the 

system stable during flight. 

 

(a) Control Input, 𝑈1 

 

(a) Control Input, 𝑈2 
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(c) Control Input, 𝑈3 

 

(d) Control Input, 𝑈4 

Figure 4.13 Control Inputs for MPC controller in Quaternion orientation 

 

 

4.2 CONTROLLER PERFORMANCE IN TRAJECTORY VARIATION 

With a view to evaluating the performances of the controllers, system responses for the 

controllers are depicted in figure 4.14 and 4.15.  It shows the response of the position 

of quadrotor following a helix trajectory for Euler angle orientation. 

 

 

a)  x vs t 

 

b) y vs t 
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c)  z vs t 

Figure 4.14 (a) x vs t, (b) y vs t, (c) z vs t in Euler angle orientation for helix trajectory 

 

 

 

 
(a) 

 
(b) 

 

Figure 4.15 (a) Circular Trajectory, (b) Helix Trajectory in Euler angle orientation 

 

Figure 4.15 shows the performance of the controller in 3D position for both 

circular and helix trajectories. 

 

a)  x vs t 
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b)  y vs t 

 

c)  z vs t 

Figure 4.16 (a) x vs t, (b) y vs t, (c) z vs t in Quaternion orientation 

Figure 4.16 depicts the performance of the controller in helix trajectory and it 

run for 100s for quaternion orientation. Figure 4.18 demonstrates circular and helix 

trajectories for the controllers in 3D in quaternion orientation. 

 

 

(a) 

 

(b) 

Figure 4.17 (a) Circular Trajectory, (b) Helix trajectory in Quaternion orientation 
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Tables 4.11-4.14 describe the performances of the controllers along x, y and z-

axis based on Root Means Square Error approach. Root-Mean-Square (RMS) is an 

approach to evaluate the accuracy of the data by comparison. The tracking performance 

of the controller is evaluated using RMS error (RMSE). 

 

Table 4.11 RMSE along x, y and z-axes in Euler angle for helix trajectory 

 

Controller RMSE along x-

axis (%) 

RMSE along y-

axis  (%) 

RMSE along z-

axis  (%) 

PD 0.9333 0.5238 0.5024 

LQR 0.9499 0.4868 0.4343 

MPC 1.7356 1.9665 1.3508 

 

Table 4.12 RMSE along x, y and z-axes in Quaternion for helix trajectory 

 

Controller RMSE along x-

axis (%) 

RMSE along y-

axis (%) 

RMSE along z-

axis (%) 

PD Quaternion 0.5393 0.8615 1.0474 

LQR Quaternion 0.8388 2.5471 2.3180 

MPC Quaternion 0.8445 3.9009 2.9437 

 

 

Table 4.13 RMSE along x, y and z-axes in Euler angle for circular trajectory 

 

Controller RMSE along x-

axis (%) 

RMSE along y-

axis (%) 

RMSE along z-

axis (%) 

PD 0.8163 1.4857 0.0965 

LQR 1.7146 1.2035 0.3128 

MPC 1.2787   6.2729 1.0022 

 

Table 4.14 RMSE along x, y and z-axes in Quaternion for circular trajectory 

 

Controller RMSE along x-

axis (%) 

RMSE along y-

axis (%) 

RMSE along z-

axis (%) 

PD Quaternion 0.6040 0.8812 0.3581 

LQR Quaternion 0.9687 2.4359 1.0931 

MPC Quaternion 2.8125 3.8419 2.3089 
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4.3 PERFORMANCE UNDER DISTURBANCES  

In order to evaluate the performances of the controllers, x, y and z are plotted with 

respect to time in presence of disturbances as in figure 4.18 and 4.19. 

 

 

(a) x vs t 

 

(b) y vs t 

 

(c) z vs t 

Figure 4.18 Position under disturbances for helix trajectory in Euler angle orientation 

  

Figure 4.18 and tables 4.15-4.16 show that MPC maintains almost same RMSE 

along x, y and z-axes in both situations (i.e. with disturbances and without disturbances). 

On the other hand, it is noticeable that both PD and LQR show steady-state error along 

x and y-axes. Therefore, the disturbance creates an impact on both the controllers even 
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though these controllers could offer promising performance without disturbance 

environment. 

Table 4.15 RMSE along x, y and z-axes under disturbances in Euler angle for helix 

trajectory 

 

Controller RMSE along x-axis 

(%) 

RMSE along y-

axis (%) 

RMSE along z-

axis (%) 

PD 0.9670 0.4754 0.5241 

LQR 3.2462 1.7189 0.1261 

MPC 1.7356 1.9665 1.3508 

 

Table 4.16 RMSE along x, y and z-axes under disturbances in Euler angle for circular 

trajectory 

 

Controller RMSE along x-axis 

(%) 

RMSE along y-axis 

(%) 

RMSE along z-

axis (%) 

PD 2.9689 1.9976 9.0425 

LQR 5.5368 0.8608 0.2266 

MPC 1.8232 6.8588 2.0071 

Figure 4.19 and table 4.17-4.18 show that both MPC and PD perform better 

compared to LQR when the system is influenced by disturbances. PD controller has 

very small steady-state error while LQR offers much. However, MPC offers promising 

performance as it does in the trajectories without disturbances and it has been validated 

by RMSE. 

 

(a) x vs t 

 

(b) y vs t 



 

96 

 

(c) z vs t 

Figure 4.19 Position under disturbances for helix trajectory in quaternion orientation 

 

Table 4.17 RMSE along x, y and z-axes under disturbances in quaternion for helix 

trajectory 

 

Controller RMSE along x-axis 

(%) 

RMSE along y-axis 

(%) 

RMSE along z-

axis (%) 

PD 1.1833 0.8135 0.2432 

LQR 48.939 38.2880 2.6607 

MPC 0.8524 3.9068 2.9437 

 

Table 4.18 RMSE along x, y and z-axes under disturbances in Quaternion for circular 

trajectory 

 

Controller RMSE along x-axis 

(%) 

RMSE along y-axis 

(%) 

RMSE along z-

axis (%) 

PD 1.2041 0.9069 5.7295 

LQR 48.7974 38.5159 19.4157 

MPC 1.0322 2.9675 1.2987 

 

From this section, it can be concluded that MPC controller can withstand 

disturbances and perform almost similar to an environment that is free from 

disturbances. Additionally, sometimes MPC shows larger tracking error compared to 

other controllers because it takes time to do optimization processes and tracking 

onwards. 
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4.4 CONTROL INPUT COMPARISON 

Control effort comparison can be one of the comparison parameters in order to evaluate 

a controller performance.  

 

(a) 

 

(b) 

Figure 4.20 𝑢𝑛𝑜𝑟𝑚 comparison in (a) Euler angle orientation (b) Quaternion 

orientation 

 

Figure 4.20 demonstrates that MPC needs the lowest control effort compared to 

other controllers in both orientation systems. Moreover, MPC renders lower 

fluctuations at control inputs compared to other controllers that is safe for the system 

during flight condition. Therefore, MPC can be the best choice on the basis of control 

effort. 

            

4.5 DISCUSSION  

From the observation of the figure 4.1 to 4.20 and table 4.1 and 4.18, it is found that PD 

controller can give faster response maintaining reasonable overshoot. In addition, LQR 

is found more robust than PD controller. However, the effect of disturbances on RMSE 

is comparatively less in LQR than PD controller.  

Besides, MPC offers promising performance based on tracking and control 

effort comparing to other two controllers that can withstand the uncertainty to the 
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system and able to maintain almost same RMSE with less control effort. Along with 

that, it could ensure considerable overshoot. However, the settling time in MPC is 

higher than other two controllers because it estimates system and then moves forward. 

In conclusion, a suitable controller for a quadrotor should have some capabilities 

like robustness with a less and stable control effort that can maintain stability to the 

system during flight. Therefore, this study can conclude that MPC can be one of the 

best-suited controllers in order to maintain all these criteria. 
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CHAPTER FIVE 

CONCLUSION 

The objectives of the work are to develop a mathematical model of a Mini Aerial 

Vehicle, quadrotor in two different orientation system such as Euler-angle and 

Quaternion systems. Moreover, the prime objective is to design a robust controller 

based on comparison among three different controllers (i.e. PD, LQR and MPC) 

considering some factors like constraints at inputs, handling model uncertainty, smooth 

control inputs and tracking accuracy.  

Accordingly, two mathematical model have been developed considering two 

different orientation systems as like Euler angle and quaternion. In addition, 

aerodynamic drag and moment have been included in order to make model more 

accurate. Apart from that, rotor dynamics with proper angular velocity limit has been 

adopted in this work.  

Three different control approaches such as PD, LQR and MPC have been 

applied to control quadrotor. As the main objective of this work is to choose a controller 

that can ensure the robustness to the system, some factors have been adopted to evaluate 

the performances of the controllers.  

The performance evaluation has been proceeded using MATLAB and Simulink 

environment. However, the performance of the controllers have been investigated based 

on overshoot and settling time when the trajectory is considered at a fixed hovering 

point. As it is highly challenging to find out proper gains for PD controller, Matlab 

Optimization Toolbox has been considered. However, both PD and LQR perform well 

and almost similar in settling time. LQR shows comparatively better than others in 

overshoot and it is almost zeros along every axis. MPC takes much time to settle 
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because of its high computation and predicting feature. However, the performance is 

still considerable for quadrotor. 

Two different trajectories have been considered to evaluate the tracking 

performance of the controllers wherein RMSE method is used for the evaluation. Here, 

MPC performs similar to PD and LQR controller in terms of tracking performance. 

However, the presence of model uncertainty in the system makes MPC different from 

other two controllers. It maintains almost same RMSE while others have failed to do 

so. Both PD and LQR controllers start to create impact on the system responses 

whenever model uncertainty has been considered in the system.  

Finally, control input performance has been taken into account to compare the 

performances among the controllers. The performance have been investigated through 

comparison among the control inputs individually of the controllers and using control 

input norm, 𝑢𝑛𝑜𝑟𝑚 approach. According to both approach, MPC offers smooth and the  

lowest control input to the system comparing to other controllers that helps to maintain 

the system stable in flight condition.  

The presented work showed the use of Linear Model Predictive Control (LMPC) 

approach for different trajectories (i.e. circle and helix) under disturbances. The main 

advantage of MPC controller that makes it different from other controllers is its 

predicting behavior. Moreover, it can handle the constraints at control inputs and 

overcome the model-disturbances without affecting the system response as it is found 

from simulation results also.  

The most crucial part of designing an MPC model includes choosing proper 

prediction horizon, control horizon and sample time because these all effect on the 

system stability. In addition, proper weight matrices for inputs and outputs also plays 

an important role in designing MPC that helps to achieve the desired trajectory. This 
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study has successfully demonstrated that MPC is able to track properly with minimal 

RMSE along with minimal control efforts in presence of model uncertainty in the 

system. 

In future, nonlinear Model Predictive Control (NMPC) approach will be 

designed that is expected to be more suitable for nonlinear quadcopter model. In this 

work, MPC is designed for linear model that motivates to move one-step further in 

future as designing MPC for nonlinear model that is expected to be more accurate for 

the system. In this work, it is considered that sensors work perfectly but in real situation, 

noise, and disturbances may exist. Therefore, in future work, the controllers should be 

applied in the real-time hardware to evaluate the performances of the controllers.  

 

 

 

 

 

 

 

 



 

102 

REFERENCES 

Ahmad, A., Tahar, K. N., Udin, W. S., Hashim, K. A., Darwin, N., Hafis, M., Azmi, S. 

M. (2013). Digital aerial imagery of unmanned aerial vehicle for various 

applications. Paper presented at the Control System, Computing and 

Engineering (ICCSCE), 2013 IEEE International Conference on Nov 29. 

Alexis, K., Nikolakopoulos, G., & Tzes, A. (2010). Experimental model predictive 

attitude tracking control of a quadrotor helicopter subject to wind-gusts. Paper 

presented at the Control & Automation (MED), 2010 18th Mediterranean 

Conference on June 23. 

Amir, A. R., & Weiss, S. I. (2003). Aerospace Products, Manufacturers, And Markets. 

In T. E. o. E. Britannica (Ed.), Aerospace industry. 

Araar, O., & Aouf, N. (2014). Full linear control of a quadrotor UAV, LQ vs H∞. Paper 

presented at the Control (CONTROL), 2014 UKACC International Conference 

on July 9. 

Argentim, W. C. R., Paulo E. Santos, Renato A. Aguiar. (2013). PID, LQR and LQR-

PID on a Quadcopter Platform. IEEE. doi:10.1109/ICIEV.2013.6572698 

Bailey, M. W. (2012). Unmanned aerial vehicle path planning and image processing 

for orthoimagery and digital surface model generation. Vanderbilt University.    

Basri, M., Ariffanan, M., Danapalasingam, K. A., & Husain, A. R. (2014). Design and 

optimization of backstepping controller for an underactuated autonomous 

quadrotor unmanned aerial vehicle. Transactions of FAMENA, 38(3), 27-44.  

Bemporad, A., Morari, M., & Lawrence Ricker, N. (2017a). Model Predictive Control 

Toolbox™ User's Guide QP Solver (pp. 2-37): The MathWorks, Inc. 

Bemporad, A., Morari, M., & Lawrence Ricker, N. (2017b). Model Predictive Control 

Toolbox™ User's Guide (Version 6.0 ed.): The MathWorks, Inc. 

Ben Ammar, N., Bouallègue, S., & Haggège, J. (2016). Modeling and sliding mode 

control of a quadrotor unmanned aerial vehicle. Paper presented at the 

Proceedings of the 3th international conference on automation, control 

engineering and computer science (ACECS 2016), Hammamet, Tunisia. 

Bendaas, I., & Naceri, F. (2013). A new method to minimize the chattering phenomenon 

in sliding mode control based on intelligent control for induction motor drives. 

Serbian journal of electrical engineering, 10(2), 231-246.  

Bolkcom, C. (2004). Homeland security: Unmanned aerial vehicles and border 

surveillance. Retrieved from Washington DC:  

Bonna, R., & Camino, J. (2015). Trajectory Tracking Control of a Quadrotor Using 

Feedback Linearization. Paper presented at the Proc. of the XVII International 

Symposium on Dynamic Problems of Mechanics DINAME-2015.–2015. 

Bouabdallah, S. (2007). Design and control of quadrotors with application to 

autonomous flying. (PhD), Lausanne, EPFL.    

Bouabdallah, S., Noth, A., & Siegwart, R. (2004). PID vs LQ control techniques applied 

to an indoor micro quadrotor. Paper presented at the Intelligent Robots and 

Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International 

Conference. 

Bouabdallah, S., & Siegwart, R. (2005). Backstepping and sliding-mode techniques 

applied to an indoor micro quadrotor. Paper presented at the Robotics and 



 

103 

Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International 

Conference. 

Boudergui, K., Carrel, F., Domenech, T., Guenard, N., Poli, J.-P., & Ravet, A. (2011). 

Development of a drone equipped with optimized sensors for nuclear and 

radiological risk characterization. Paper presented at the Advancements in 

Nuclear Instrumentation Measurement Methods and their Applications 

(ANIMMA), 2011 2nd International Conference on June 6. 

Bouffard, P. (2012). On-board Model Predictive Control of a Quadrotor Helicopter: 

Design, Implementation, and Experiments. University of California, Berkeley.    

Bresciani, T. (2008). Modelling, identification and control of a quadrotor helicopter. 

(Master MSc Theses), Lund University, Sweden.    

Carino, J., Abaunza, H., & Castillo, P. (2015a). Quadrotor quaternion control. Paper 

presented at the Unmanned Aircraft Systems (ICUAS), 2015 International 

Conference on June 9. 

Carino, J., Abaunza, H., & Castillo, P. (2015b). Quadrotor quaternion control. Paper 

presented at the Unmanned Aircraft Systems (ICUAS), 2015 International 

Conference on. 

Carrillo, L. R. G., López, A. E. D., Lozano, R., & Pégard, C. (2012). Quad rotorcraft 

control: vision-based hovering and navigation: Springer Science & Business 

Media. 

Casbeer, D. W., Beard, R. W., McLain, T. W., Li, S.-M., & Mehra, R. K. (2005). Forest 

fire monitoring with multiple small UAVs. Paper presented at the American 

Control Conference, 2005. Proceedings of the 2005. 

Chapman, A. (2017). Types of Drones: Multi-Rotor vs Fixed-Wing vs Single Rotor vs 

Hybrid VTOL. Retrieved February 14, 2017 

https://www.auav.com.au/articles/drone-types/ 

Chung, C.-W., & Chang, Y. Design of Adaptive Backstepping controller for Systems 

with Mismatched Perturbations to Achieve Asymptotical Stability.  

Clough, B. (2002). Metrics, Schmetrics! How do you Track A UAV's Autonomy? Paper 

presented at the 1st UAV Conference. 

Conner, M. (2017). Helios Prototype Flying Wing.   Retrieved February 14, 2017 

https://www.nasa.gov/centers/dryden/multimedia/imagegallery/Helios/ED03-

0152-2.html 

Cook, D., & Das, S. K. (2004). Smart environments: Technology, protocols and 

applications (Vol. 43): John Wiley & Sons. 

Cowling, I. D., Yakimenko, O. A., Whidborne, J. F., & Cooke, A. K. (2007). A 

prototype of an autonomous controller for a quadrotor UAV. Paper presented at 

the Control Conference (ECC), 2007 European. 

Cubillos, X., Celia, d. S., & Luiz Carlos, G. (2010). Using of H-infinity control method 

in attitude control system of rigid-flexible satellite. Mathematical Problems in 

Engineering, 2009.  

Cuthbertson, A. (2016). Firefighting, Criminal Chasing, Rescue Drones Coming To 

Europe. Newsweek. 

Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation 

vectors. Matrix, 58(15-16), 1-35.  

Efe, M. Ö. (2011). Neural Network Assisted Computationally Simple PIλDμ Control of 

a Quadrotor UAV. IEEE Transactions on Industrial Informatics, 7(2), 354-361.  

ElKholy, H. (2014). Dynamic modeling and control of a quadrotor using linear and 

nonlinear approaches. Master thesis, The American University in Cairo.    



 

104 

Embention. (2016). NM& F300, New High Performance Fixed Wing UAV. Retrieved 

from  

Esteves, D. J. F. (2014). Development and Experimental Validation of an Indoor Low 

Cost Quadrotor: Hover Stabilization with Altitude Control.  

Fang, Z., & Gao, W. (2011). Adaptive integral backstepping control of a micro-

quadrotor. Paper presented at the Intelligent Control and Information 

Processing (ICICIP), 2011 2nd International Conference on. 

Feng, L. X., Mei, G. L., Wei, G. Z., & Qing, S. Y. (2013). A UAV Allocation Method 

for Traffic Survillance in Sparse Road Network. Journal of Highway and 

Transportation Research and Development, 7(2), 81-87.  

Fresk, E., & Nikolakopoulos, G. (2013). Full quaternion based attitude control for a 

quadrotor. Paper presented at the Control Conference (ECC), 2013 European 

on July 17. 

Gevaert, C. M., Suomalainen, J., Tang, J., & Kooistra, L. (2015). Generation of 

spectral–temporal response surfaces by combining multispectral satellite and 

hyperspectral UAV imagery for precision agriculture applications. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 

8(6), 3140-3146.  

Gibbs, Y. (2014a). NASA Armstrong Fact Sheet: Helios Prototype.   Retrieved 

February 14, 2017 

https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-068-DFRC.html 

Gibbs, Y. (2014b). NASA Armstrong Fact Sheet: Pathfinder Solar-Powered Aircraft.   

https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-034-DFRC.html 

Girard, A. R., Howell, A. S., & Hedrick, J. K. (2004). Border patrol and surveillance 

missions using multiple unmanned air vehicles. Paper presented at the Decision 

and Control, 2004. 43rd IEEE Conference on Dec 17. 

Grenzdörffer, G., Engel, A., & Teichert, B. (2008). The photogrammetric potential of 

low-cost UAVs in forestry and agriculture. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 31(B3), 

1207-1214.  

Haddal, C. C., & Gertler, J. (2010). Homeland security: Unmanned aerial vehicles and 

border surveillance. Retrieved from Library of Congree Washington DC: 

Retrieved February 14, 2017 http://www.dtic.mil/docs/citations/ADA524297 

Hausamann, D., Zirnig, W., Schreier, G., & Strobl, P. (2005). Monitoring of gas 

pipelines–a civil UAV application. Aircraft Engineering and Aerospace 

Technology, 77(5), 352-360.  

Hoffmann, G., Huang, H., Waslander, S., & Tomlin, C. (2007). Quadrotor helicopter 

flight dynamics and control: Theory and experiment. Paper presented at the 

AIAA Guidance, Navigation and Control Conference and Exhibit. 

Horn, B. K. (2001). Some notes on unit quaternions and rotation. Lecture handouts.  

Hou, H., Zhuang, J., Xia, H., Wang, G., & Yu, D. (2010). A simple controller of minisize 

quad-rotor vehicle. Paper presented at the Mechatronics and Automation 

(ICMA), 2010 International Conference on. 

Hugenholtz, C. H., Moorman, B. J., Riddell, K., & Whitehead, K. (2012). Small 

unmanned aircraft systems for remote sensing and earth science research. Eos, 

Transactions American Geophysical Union, 93(25), 236-236.  

Huo, X., Huo, M., & Karimi, H. R. (2014). Attitude stabilization control of a quadrotor 

UAV by using backstepping approach. Mathematical Problems in Engineering, 

2014.  



 

105 

ICAO. (2011). ICAO Circular 328-AN/190. Canada: International Civil Aviation 

Organization. 

Islam, M., Okasha, M., & Idres, M. (2017). Dynamics and control of quadcopter using 

linear model predictive control approach. Paper presented at the IOP 

Conference Series: Materials Science and Engineering. 

Joyo, M. K., Ahmed, S. F., & Hazry, D. (2013). Position controller design for quad-

rotor under perturbed condition. Wulfenia Journal, 20(7), 178-189.  

Junior, J. C. V., De Paula, J. C., Leandro, G. V., & Bonfim, M. C. (2013). Stability 

control of a quad-rotor using a PID controller. Brazilian Journal of 

Instrumentation and Control, 1(1), 15-20.  

Kalman, R. E. (1970). Lectures on controllability and observability. Retrieved from 

Retrieved February 14, 2017 http://www.dtic.mil/dtic/tr/fulltext/u2/704617.pdf 

Kamps, H. J. (2017). This flappy bird-drone keeps airports safe. Retrieved February 14, 

2017 https://techcrunch.com/2017/01/07/is-it-a-bird-is-it-a-plane-well-it-is-a-

drone-actually/ 

Karakoc, T. H., Ozerdem, M. B., Sogut, M. Z., Colpan, C. O., Altuntas, O., & Açıkkalp, 

E. (2016). Sustainable Aviation: Energy and Environmental Issues: Springer. 

Keane, J. F., & Carr, S. S. (2013). A brief history of early unmanned aircraft. Johns 

Hopkins APL Technical Digest, 32(3), 558-571.  

Kehlenbeck, A. (2014). Quaternion-based control for aggressive trajectory tracking 

with a micro-quadrotor UAV. University of Maryland, College Park.    

Kendoul, F. (2012). Survey of advances in guidance, navigation, and control of 

unmanned rotorcraft systems. Journal of Field Robotics, 29(2), 315-378.  

Kodgirwar, Manish Vivek Kumar, & Sushant Sawant Shegokar. (2014). Design of 

control system for quadcopter using Complementary Filter and PID controller. 

Internatioanl Journal of Engineering Research and Technology, 3(4).  

Kozák, Š. (2012). Advanced control engineering methods in modern technological 

applications. Paper presented at the 13th International Carpathian Control 

Conference (ICCC), 2012. 

Koziol Jr, J. S. (1971). Simulation model for the Piper PA-30 light maneuverable 

aircraft in the final approach. Retrieved from  

Kulumani, S., & Lee, T. (2017). Constrained Geometric Attitude Control on SO (3). 

International Journal of Control, Automation, and Systems, 15(6).  

Kurtz, M. J., & Henson, M. A. (1998). Feedback linearizing control of discrete-time 

nonlinear systems with input constraints. International Journal of Control, 

70(4), 603-616.  

Lanzon, A., Freddi, A., & Longhi, S. (2014). Flight control of a quadrotor vehicle 

subsequent to a rotor failure. Journal of Guidance, Control, and Dynamics, 

37(2), 580-591.  

Lee, B. (2013). TDR-1.   Retrieved February 14, 2017d from Retrieved February 14, 

2017 http://www.nnapprentice.com/alumni/letter/TDR_1.pdf 

Leishman, J. G. (2002). The breguet-richet quad-rotor helicopter of 1907. Vertiflite, 

47(3), 58-60.  

Levant, A. (2007). Principles of 2-sliding mode design. automatica, 43(4), 576-586.  

Li, J., & Li, Y. (2011). Dynamic analysis and PID control for a quadrotor. Paper 

presented at the Mechatronics and Automation (ICMA), 2011 International 

Conference on. 

Lindblom, S., & Lundmark, A. (2015). Modelling and control of a hexarotor UAV. 



 

106 

Long, Y., Lyttle, S., Pagano, N., & Cappelleri, D. J. (2012). Design and quaternion-

based attitude control of the omnicopter mav using feedback linearization. 

Paper presented at the ASME International Design Engineering Technical 

Conference (IDETC). 

Madani, T., & Benallegue, A. (2006). Backstepping control for a quadrotor helicopter. 

Paper presented at the Intelligent Robots and Systems, 2006 IEEE/RSJ 

International Conference on. 

Marshall, D. M., Barnhart, R. K., Hottman, S. B., Shappee, E., & Most, M. T. (2016). 

Introduction to unmanned aircraft systems: Crc Press. 

Mathworks. (2018). System Identification Toolbox.   Retrieved April 23, 2018. 

https://www.mathworks.com/products/sysid.html 

McDonald, G. (2016). New Wing Design Powers Crazy Bat Drones. Retrieved February 

14, 2016. https://www.seeker.com/new-wing-design-powers-crazy-bat-drones-

1770896759.html 

Murphy, D., & Cycon, J. (1999). Applications for mini VTOL UAV for law 

enforcement. SPIE, 3577. doi:doi:10.1117/12.336986 

Murrow, H., & Eckstrom, C. (1979). Drones for Aerodynamic and Structural Testing 

(DAST)-A Status Report. Journal of Aircraft, 16(8), 521-526.  

NASA. (2015). Watch NASA Langley’s “Safe2Ditch” UAV Crash Management 

Technology Webinar!   Retrieved April 23, 2017d from 

https://www.nasa.gov/feature/register-for-nasa-s-safe2ditch-uav-technology-

webinar/ 

NASA Armstrong Fact Sheet: Altus II. (2014).   Retrieved April 24, 2017d from 

https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-058-DFRC.html 

Nonami, K. (2007). Prospect and recent research & development for civil use 

autonomous unmanned aircraft as UAV and MAV. Journal of system Design 

and Dynamics, 1(2), 120-128.  

Padhee, S. (2014). Controller design for temperature control of heat exchanger system: 

Simulation Studies. WSEAS Trans. Syst. Contol, 9, 485-491.  

Pipatpaibul, P.-i., & Ouyang, P. (2013). Application of online iterative learning tracking 

control for quadrotor UAVs. ISRN robotics, 2013.  

Pop, C. I., & Dulf, E. H. (2011). Robust feedback linearization control for reference 

tracking and disturbance rejection in nonlinear systems Recent Advances in 

Robust Control-Novel Approaches and Design Methods: InTech. 

Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2008). MPC with Nonlinear ℋ∞ Control 

for Path Tracking of a Quad-Rotor Helicopter. IFAC Proceedings Volumes, 

41(2), 8564-8569.  

Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2011). Nonlinear H∞ controller for the 

quad-rotor helicopter with input coupling. IFAC Proceedings Volumes, 44(1), 

13834-13839.  

Reyes-Valeria, E., Enriquez-Caldera, R., Camacho-Lara, S., & Guichard, J. (2013). 

LQR control for a quadrotor using unit quaternions: Modeling and simulation. 

Paper presented at the Electronics, Communications and Computing 

(CONIELECOMP), 2013 International Conference on. 

Rosenberg, A. S. (2009). An evaluation of a UAV guidance system with consumer grade 

GPS receivers: ProQuest. 

Runcharoon, K., & Srichatrapimuk, V. (2013). Sliding mode control of quadrotor. 

Paper presented at the Technological Advances in Electrical, Electronics and 

Computer Engineering (TAEECE), 2013 International Conference on May 9. 

https://www.mathworks.com/products/sysid.html
https://www.seeker.com/new-wing-design-powers-crazy-bat-drones-1770896759.html
https://www.seeker.com/new-wing-design-powers-crazy-bat-drones-1770896759.html
https://www.nasa.gov/feature/register-for-nasa-s-safe2ditch-uav-technology-webinar/
https://www.nasa.gov/feature/register-for-nasa-s-safe2ditch-uav-technology-webinar/
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-058-DFRC.html


 

107 

Runge, H., Rack, W., Ruiz-Leon, A., & Hepperle, M. (2007). A solar powered hale-uav 

for arctic research. Paper presented at the 1st CEAS European Air and Space 

Conference on Sept. 

Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkilä, J., Holmlund, C., . . . Antila, 

T. (2011). Unmanned Aerial Vehicle (UAV) operated spectral camera system 

for forest and agriculture applications. Paper presented at the SPIE Remote 

Sensing. 

Sabatino, F. (2015). Quadrotor control: modeling, nonlinearcontrol design, and 

simulation. (Master), KTH Royal Institute of Technology, Stockholm, Sweden.    

Sadeghzadeh, I., Abdolhosseini, M., & Zhang, Y. (2012). Payload drop application of 

unmanned quadrotor helicopter using gain-scheduled PID and model predictive 

control techniques. Intelligent robotics and applications, 386-395.  

Santos, M., Lopez, V., & Morata, F. (2010). Intelligent fuzzy controller of a quadrotor. 

Paper presented at the Intelligent Systems and Knowledge Engineering (ISKE), 

2010 International Conference on. 

Sawyer, S. (2015). Gain-Scheduled Control of a Quadcopter UAV. University of 

Waterloo.    

Schaft, & Arjan. (2000). L2-gain and passivity techniques in nonlinear control: 

Springer. 

Schroer, R. (2003). UAVs: the future.[A century of powered flight: 1903-2003]. IEEE 

Aerospace and Electronic Systems Magazine, 18(7), 61-63.  

Shahrokhi, M., & Zomorrodi, A. (2013). Comparison of PID controller tuning methods. 

Department of Chemical & Petroleum Engineering Sharif University of 

Technology.  

Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Introduction: Intuitive 

theory of sliding mode control Sliding Mode Control and Observation (pp. 1-

42): Springer. 

Sorensen, A. (2010). Autonomous control of a miniature quadrotor following fast 

trajectories. Aalborg University, Denmark, 12.  

Sözen, V. (2014). Optimal deployment of unmanned aerial vehicles for border 

surveillance. NAVAL POSTGRADUATE SCHOOL, MONTEREY, 

CALIFORNIA.    

Spooner, S. (1923). A successful french helicopter. Flight International, XVI, 47. 

Staff, D. I. D. (2012). Thailand’s Insurgency: The Blimp and I. Retrieved February 14, 

2017 http://www.defenseindustrydaily.com/Thailand-Contracts-Aria-for-

Blimps-Communications-05401/ 

Swamp, A. (2016). Second order sliding mode control for quadrotor. Paper presented 

at the 2016 IEEE First International Conference on Control, Measurement and 

Instrumentation (CMI). 

Tang, L., & Shao, G. (2015). Drone remote sensing for forestry research and practices. 

Journal of Forestry Research, 26(4), 791-797.  

Team, C. U. A. (2006). Earth Observations and the Role of UAVs. Retrieved February 

14,2017https://www.nasa.gov/centers/dryden/pdf/175939main_Earth_Obs_U

AV_Vol_1_v1.1_Final.pdf 

Themistocleous, K., Agapiou, A., King, H. M., King, N., & Hadjimitsis, D. G. (2014). 

More Than a Flight: The Extensive Contributions of UAV Flights to 

Archaeological Research-The Case Study of Curium Site in Cyprus. Paper 

presented at the EuroMed. 

http://www.defenseindustrydaily.com/Thailand-Contracts-Aria-for-Blimps-Communications-05401/
http://www.defenseindustrydaily.com/Thailand-Contracts-Aria-for-Blimps-Communications-05401/
https://www.nasa.gov/centers/dryden/pdf/175939main_Earth_Obs_UAV_Vol_1_v1.1_Final.pdf
https://www.nasa.gov/centers/dryden/pdf/175939main_Earth_Obs_UAV_Vol_1_v1.1_Final.pdf


 

108 

Tule, C. A. (2014). Trajectory Generation And Constrained Control Of Quadrotors. 

(Master MA Thesis), University of Texas.   (USA) 

Twain, M. (2016). 2 From battlefield to backyard. Drones in Society: Exploring the 

strange new world of unmanned aircraft.  

Valavanis, K. P., & Vachtsevanos, G. J. (2014). Handbook of unmanned aerial vehicles: 

Springer Publishing Company, Incorporated. 

Van Blyenburgh, P. (1999). UAVs: an overview. Air & Space Europe, 1(5-6), 43-47.  

Waharte, S., & Trigoni, N. (2010). Supporting search and rescue operations with UAVs. 

Paper presented at the Emerging Security Technologies (EST), 2010 

International Conference on Sept 6. 

Wegener, S., Schoenung, S., Totah, J., Sullivan, D., Frank, J., Enomoto, F., Theodore, 

C. (2004). UAV autonomous operations for airborne science missions. Paper 

presented at the AIAA 3rd" Unmanned Unlimited" Technical Conference, 

Workshop and Exhibit. 

Weibel, R. E., & Hansman, R. J. (2004). Safety considerations for operation of 

unmanned aerial vehicles in the national airspace system. Paper presented at 

the 3rd "Unmanned Unlimited" Technical Conference, Chicago, Illinois.  

Wie, B. (2008). Space vehicle dynamics and control: Aiaa. 

Wolfe, R. C. (2003). NASA ERAST non-cooperative DSA flight test. Proceedings of 

AUVSI Unmanned Systems 2003.  

Xu, R., & Ozguner, U. (2006). Sliding mode control of a quadrotor helicopter. Paper 

presented at the Decision and Control, 2006 45th IEEE Conference on. 

Yanushevsky, R. (2007). Modern missile guidance: CRC Press. 

Yarrish, G. (2015). British Soldiers in Afghanistan deploy Micro UAV Helis. Retrieved 

February 14, 2017 http://www.modelairplanenews.com/british-soldiers-in-

afghanistan-deploy-micro-uav-helis/ 

Yoshimoto, H., & Hori, K. Blimps as Performance Media.  

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems 

for precision agriculture: a review. Precision agriculture, 13(6), 693-712.  

Zulu, A., & John, S. (2016). A review of control algorithms for autonomous quadrotors. 

arXiv preprint arXiv:1602.02622.  

 

 

http://www.modelairplanenews.com/british-soldiers-in-afghanistan-deploy-micro-uav-helis/
http://www.modelairplanenews.com/british-soldiers-in-afghanistan-deploy-micro-uav-helis/


 

109 

APPENDIX A 

 

Table 1: Quadrotor Parameters and initial conditions for simulation. 

Symbol Description Value Unit 

𝐼  Moment of inertia 
(
7.5𝑒 − 3 0 0

0 7.5𝑒 − 3 0
0 0 1.3𝑒 − 2

) 
kg.m2 

𝑙  Arm length 0.23 M 

𝐼𝑟  Inertia of motor 6e-5 kg.m2 

𝑘𝑓  Thrust coefficient 3.13e-5 Ns2 

𝑘𝑀  Moment coefficient 7.5e-7 Nms2 

𝑚  Mass of quadrotor 0.65 Kg 

𝑔  Gravity 9.81 ms2 

𝑘𝑡  Aerodynamic thrust drag 

coefficient (
0.1 0 0
0 0.1 0
0 0 0.15

)  
Ns/m 

𝑘𝑟  Aerodynamic moment drag 

coefficient (
0.1 0 0
0 0.1 0
0 0 0.15

)  
Nm.s 
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APPENDIX B 

LINEARIZED MODEL 

LINEARIZED MODEL OF EULER ANGLE ORIENTATION 

 

𝐴 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −
𝑘𝑡𝑥

𝑚
0 0 −𝑔sin𝜓𝑇 −𝑔cos𝜓𝑇 0 0 0 0

0 0 0 0 −
𝑘𝑡𝑦

𝑚
0 𝑔cos𝜓𝑇 −𝑔sin𝜓𝑇 0 0 0 0

0 0 0 0 0 −
𝑘𝑡𝑧

𝑚
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 −
𝑘𝑟𝑥

𝐼𝑥
0 0

0 0 0 0 0 0 0 0 0 0 −
𝑘𝑟𝑦

𝐼𝑦
0

0 0 0 0 0 0 0 0 0 0 0 −
𝑘𝑟𝑧

𝐼𝑧 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

𝐵 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0
𝑙

𝐼𝑥
0 0

0 0
𝑙

𝐼𝑥
0

0 0 0
𝑙

𝐼𝑥)
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LINEARIZED MODEL OF QUATERNION ORIENTATION 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 −
𝑘𝑡𝑥

𝑚
0 0 0 −2𝑔𝑞3 −2𝑔𝑞0 0 0 0 0

0 0 0 0 −
𝑘𝑡𝑦

𝑚
0 0 2𝑔𝑞0 −2𝑔𝑞3 0 0 0 0

0 0 0 0 0 −
𝑘𝑡𝑧

𝑚
−4𝑔𝑞0 0 0 −4𝑔𝑞3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −
𝑞3

2

0 0 0 0 0 0 0 0 0 0
𝑞0

2
−

𝑞3

2
0

0 0 0 0 0 0 0 0 0 0
𝑞3

2

𝑞0

2
0

0 0 0 0 0 0 0 0 0 0 0 0
𝑞0

2

0 0 0 0 0 0 0 0 0 0 −
𝑘𝑟𝑥

𝐼𝑥
0 0

0 0 0 0 0 0 0 0 0 0 0 −
𝑘𝑟𝑦

𝐼𝑦
0

0 0 0 0 0 0 0 0 0 0 0 0 −
𝑘𝑟𝑧

𝐼𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

𝐵 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
2𝑞0

2 + 2𝑞3
2 − 1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
𝑙

𝐼𝑥
0 0

0 0
𝑙

𝐼𝑥
0

0 0 0
𝑙

𝐼𝑥)
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APPENDIX C 

MATLAB CODE 

NONLINEAR PLANT MODEL IN EULER ANGLE ORIENTATION 

 

function [sys,x0,str,ts,simStateCompliance] = sfun_nonlinear_plant(t,s,u,flag, params) 

switch flag, 

 

  %%%%%%%%%%%%%%%%%% 

  % Initialization % 

  %%%%%%%%%%%%%%%%%% 

  case 0, 

    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes(params); 

 

  %%%%%%%%%%%%%%% 

  % Derivatives % 

  %%%%%%%%%%%%%%% 

  case 1, 

    sys=mdlDerivatives(t,s,u, params); 

 

  %%%%%%%%%% 

  % Update % 

  %%%%%%%%%% 

  case 2, 

    sys=mdlUpdate(t,s,u); 

 

  %%%%%%%%%%% 

  % Outputs % 

  %%%%%%%%%%% 

  case 3, 

    sys=mdlOutputs(t,s,u); 

 

  %%%%%%%%%%%%%%%%%%%%%%% 

  % GetTimeOfNextVarHit % 

  %%%%%%%%%%%%%%%%%%%%%%% 

  case 4, 

    sys=mdlGetTimeOfNextVarHit(t,s,u); 

 

  %%%%%%%%%%%%% 

  % Terminate % 

  %%%%%%%%%%%%% 

  case 9, 

    sys=mdlTerminate(t,s,u); 
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  %%%%%%%%%%%%%%%%%%%% 

  % Unexpected flags % 

  %%%%%%%%%%%%%%%%%%%% 

  otherwise 

    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); 

 

end 

 

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes(params) 

 

sizes = simsizes; 

 

sizes.NumContStates  = 12; 

sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 12; 

sizes.NumInputs      = 4; 

sizes.DirFeedthrough = 0; 

sizes.NumSampleTimes = 1;   % at least one sample time is needed 

 

sys = simsizes(sizes); 

 

x0  = params.x0; 

 

str = []; 

 

ts  = [0 0]; 

 

simStateCompliance = 'UnknownSimState'; 

 

function sys=mdlDerivatives(t,s,u, params) 

 

m     = params.m; 

g     = params.g; 

Jx     = params.Jx; 

Jy     = params.Jy; 

Jz     = params.Jz; 

Jr    = params.Jr; 

l     = params.l; 

ktx    = params.ktx; 

kty    = params.kty; 

ktz    = params.ktz; 

krx    = params.krx; 

kry    = params.kry; 

krz    = params.krz; 

kf    = params.kf; 

km    = params.km; 

 

xdot = s(4); 

ydot = s(5); 
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zdot = s(6); 

 

phi = s(7); 

theta = s(8); 

psi = s(9); 

 

p = s(10); 

q = s(11); 

r = s(12); 

 

u1 = u(1); 

u2 = u(2); 

u3 = u(3); 

u4 = u(4);                                                                                       

wm_min = 0; 

 

u1_max = kf*4*wm_max^2; 

u2_max = kf*wm_max^2; 

u3_max = kf*wm_max^2; 

u4_max = km*2*wm_max^2; 

 

if (u1 >= u1_max) 

    u1 = u1_max; 

 

else 

    u1; 

 

end 

 

if (u2 >= u2_max) 

    u2 = u2_max; 

 

else 

    u2; 

 

end 

 

if (u3 >= u3_max) 

    u3 = u3_max; 

 

else 

    u3; 

 

end 

 

if (u4 >= u4_max) 

    u4 = u4_max; 

 

else 
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    u4; 

 

end 

 

wm1 = ((1/4*kf)*u1 + (1/2*kf)*u3 + (1/4*km)*u4); 

wm2 = ((1/4*kf)*u1 - (1/2*kf)*u2 - (1/4*km)*u4); 

wm3 = ((1/4*kf)*u1 - (1/2*kf)*u3 + (1/4*km)*u4); 

wm4 = ((1/4*kf)*u1 + (1/2*kf)*u3 - (1/4*km)*u4); 

 

wm_max = (90/100)*9000*(2*pi/60); 

wm_min = 0; 

 

if (wm1 <= wm_min) 

    wm1 = wm_min; 

else 

    wm1; 

end 

 

if (wm2 <= wm_min) 

    wm2 = wm_min; 

else 

    wm2; 

end 

 

if (wm3 <= wm_min) 

    wm3 = wm_min; 

else 

    wm3; 

end 

 

if (wm4 <= wm_min) 

    wm4 = wm_min; 

 

else 

    wm4; 

 

end 

 

if (wm1 >= wm_max) 

    wm1 = wm_max; 

 

else 

    wm1; 

 

end 

 

if (wm2 >= wm_max) 

    wm2 = wm_max; 

else 
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    wm2; 

end 

if (wm3 >= wm_max) 

    wm3 = wm_max; 

else 

    wm3; 

end 

if (wm4 >= wm_max) 

    wm4 = wm_max; 

else 

    wm4; 

end 

wmr     = -sqrt(wm1)+sqrt(wm2)-sqrt(wm3)+sqrt(wm4); 

sdot = [xdot 

        ydot 

        zdot 

        -(ktx*xdot + u1*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)))/m 

        -(kty*ydot - u1*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta)))/m 

        -(ktz*zdot - g*m + u1*cos(phi)*cos(theta))/m 

        p + r*cos(phi)*tan(theta) + q*sin(phi)*tan(theta)                         

        q*cos(phi) - r*sin(phi)  

        (r*cos(phi))/cos(theta) + (q*sin(phi))/cos(theta)                                           

        -(krx*p - l*u2 - Jy*q*r + Jz*q*r + Jr*q*wmr)/Jx  

         (l*u3 - kry*q - Jx*p*r + Jz*p*r + Jr*p*wmr)/Jy; 

         (u4 - krz*r + Jx*p*q - Jy*p*q)/Jz]                                               

 

 sys = sdot; 

function sys=mdlUpdate(t,s,u) 

sys = []; 

function sys=mdlOutputs(t,s,u) 

sys = s; 

function sys=mdlGetTimeOfNextVarHit(t,s,u) 

sampleTime = 1;     

sys = t + sampleTime; 

function sys=mdlTerminate(t,s,u) 

sys = []; 
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LINEAR PLANT MODEL IN EULER ANGLE ORIENTATION 

 

function [sys,dx,str,ts,simStateCompliance] = sfun_uav_linear(t,s,du,flag, params) 

switch flag, 

 

  %%%%%%%%%%%%%%%%%% 

  % Initialization % 

  %%%%%%%%%%%%%%%%%% 

  case 0, 

    [sys,dx,str,ts,simStateCompliance]=mdlInitializeSizes(params); 

 

  %%%%%%%%%%%%%%% 

  % Derivatives % 

  %%%%%%%%%%%%%%% 

  case 1, 

    sys=mdlDerivatives(t,s,du, params); 

 

  %%%%%%%%%% 

  % Update % 

  %%%%%%%%%% 

  case 2, 

    sys=mdlUpdate(t,s,du); 

 

  %%%%%%%%%%% 

  % Outputs % 

  %%%%%%%%%%% 

  case 3, 

    sys=mdlOutputs(t,s,du); 

 

  %%%%%%%%%%%%%%%%%%%%%%% 

  % GetTimeOfNextVarHit % 

  %%%%%%%%%%%%%%%%%%%%%%% 

  case 4, 

    sys=mdlGetTimeOfNextVarHit(t,s,du); 

 

  %%%%%%%%%%%%% 

  % Terminate % 

  %%%%%%%%%%%%% 

  case 9, 

    sys=mdlTerminate(t,s,du); 

 

  %%%%%%%%%%%%%%%%%%%% 

  % Unexpected flags % 

  %%%%%%%%%%%%%%%%%%%% 

  otherwise 

    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); 

 

end 
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sizes = simsizes; 

 

sizes.NumContStates  = 12; 

sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 12; 

sizes.NumInputs      = 4; 

sizes.DirFeedthrough = 0; 

sizes.NumSampleTimes = 1;   % at least one sample time is needed 

 

sys = simsizes(sizes); 

 

dx  = params.dx; 

 

str = []; 

 

ts  = [0 0]; 

 

simStateCompliance = 'UnknownSimState'; 

 

 

function sys=mdlDerivatives(t,s,du, params) 

 

m     = params.m; 

g     = params.g; 

 

Jx     = params.Jx; 

Jy     = params.Jy; 

Jz     = params.Jz; 

 

Jr    = params.Jr; 

l     = params.l; 

 

ktx    = params.ktx; 

kty    = params.kty; 

ktz    = params.ktz; 

 

 

krx    = params.krx; 

kry    = params.kry; 

krz    = params.krz; 

km     = params.km; 

kf     = params.kf; 

 

phi = 0; 

theta = 0; 

psi = 10*pi/180; 

 

p = 0; 
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q = 0; 

r = 0; 

 

u1 = du(1); 

u2 = du(2); 

u3 = du(3); 

u4 = du(4); 

 

wm_max = (90/100)*9000*(2*pi/60); 

wm_min = 0; 

 

u1_max = kf*4*wm_max^2; 

u2_max = kf*wm_max^2; 

u3_max = kf*wm_max^2; 

u4_max = km*2*wm_max^2; 

 

if (u1 >= u1_max) 

    u1 = u1_max; 

 

else 

    u1; 

 

end 

 

if (u2 >= u2_max) 

    u2 = u2_max; 

 

else 

    u2; 

 

end 

 

if (u3 >= u3_max) 

    u3 = u3_max; 

 

else 

    u3; 

 

end 

 

if (u4 >= u4_max) 

    u4 = u4_max; 

 

else 

    u4; 

 

end 

 

wm1 = ((1/4*kf)*u1 + (1/2*kf)*u3 + (1/4*km)*u4); 
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wm2 = ((1/4*kf)*u1 - (1/2*kf)*u2 - (1/4*km)*u4); 

wm3 = ((1/4*kf)*u1 - (1/2*kf)*u3 + (1/4*km)*u4); 

wm4 = ((1/4*kf)*u1 + (1/2*kf)*u3 - (1/4*km)*u4); 

 

wm_max = (90/100)*9000*(2*pi/60); 

wm_min = 0; 

 

if (wm1 <= wm_min) 

    wm1 = wm_min; 

 

else 

    wm1; 

 

end 

 

if (wm2 <= wm_min) 

    wm2 = wm_min; 

 

else 

    wm2; 

 

end 

 

if (wm3 <= wm_min) 

    wm3 = wm_min; 

else 

    wm3; 

end 

 

if (wm4 <= wm_min) 

    wm4 = wm_min; 

else 

    wm4; 

 

end 

 

if (wm1 >= wm_max) 

    wm1 = wm_max; 

else 

    wm1; 

 

end 

if (wm2 >= wm_max) 

    wm2 = wm_max; 

 

else 

    wm2; 

end 
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if (wm3 >= wm_max) 

    wm3 = wm_max; 

else 

    wm3; 

end 

 

if (wm4 >= wm_max) 

    wm4 = wm_max; 

else 

    wm4; 

end 

 

wmr     = -wm1+wm2-wm3+wm4; 

 

if (wmr <= minVal) 

    wmr = minVal; 

else 

    wmr; 

end 

 

 

A = [ 0, 0, 0,      1,      0,      0,                                                          0,                                                                           0,                                                          

0,                         0,                          0,                   0 

      0, 0, 0,      0,      1,      0,                                                          0,                                                                           0,                                                          

0,                         0,                          0,                   0 

      0, 0, 0,      0,      0,      1,                                                          0,                                                                           0,                                                          

0,                         0,                          0,                   0 

      0, 0, 0, -ktx/m,      0,      0, -(u1*(cos(phi)*sin(psi) - cos(psi)*sin(phi)*sin(theta)))/m,                                        -

(u1*cos(phi)*cos(psi)*cos(theta))/m, -(u1*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta)))/m,                         0,                          

0,                   0 

      0, 0, 0,      0, -kty/m,      0,  (u1*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)))/m,                                        -

(u1*cos(phi)*cos(theta)*sin(psi))/m, -(u1*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)))/m,                         0,                          

0,                   0 

      0, 0, 0,      0,      0, -ktz/m,                                 (u1*cos(theta)*sin(phi))/m,                                                  

(u1*cos(phi)*sin(theta))/m,                                                          0,                         0,                          0,                   0 

      0, 0, 0,      0,      0,      0,              q*cos(phi)*tan(theta) - r*sin(phi)*tan(theta),               r*cos(phi)*(tan(theta)^2 + 1) + 

q*sin(phi)*(tan(theta)^2 + 1),                                                          0,                         1,        sin(phi)*tan(theta), cos(phi)*tan(theta) 

      0, 0, 0,      0,      0,      0,                                  - r*cos(phi) - q*sin(phi),                                                                           0,                                                          

0,                         0,                   cos(phi),           -sin(phi) 

      0, 0, 0,      0,      0,      0,          (q*cos(phi))/cos(theta) - (r*sin(phi))/cos(theta), (r*cos(phi)*sin(theta))/cos(theta)^2 + 

(q*sin(phi)*sin(theta))/cos(theta)^2,                                                          0,                         0,        sin(phi)/cos(theta), 

cos(phi)/cos(theta) 

      0, 0, 0,      0,      0,      0,                                                          0,                                                                           0,                                                          

0,                   -krx/Jx, -(Jz*r - Jy*r + Jr*wmr)/Jx,    (Jy*q - Jz*q)/Jx 

      0, 0, 0,      0,      0,      0,                                                          0,                                                                           0,                                                          

0, (Jz*r - Jx*r + Jr*wmr)/Jy,                    -kry/Jy,   -(Jx*p - Jz*p)/Jy 

      0, 0, 0,      0,      0,      0,                                                          0,                                                                           0,                                                          

0,          (Jx*q - Jy*q)/Jz,           (Jx*p - Jy*p)/Jz,             -krz/Jz]; 
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B = [                                                    0,    0,    0,    0 

                                                         0,    0,    0,    0 

                                                         0,    0,    0,    0 

     -(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta))/m,    0,    0,    0 

      (cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))/m,    0,    0,    0 

                                  -(cos(phi)*cos(theta))/m,    0,    0,    0 

                                                         0,    0,    0,    0 

                                                         0,    0,    0,    0 

                                                         0,    0,    0,    0 

                                                         0, l/Jx,    0,    0 

                                                         0,    0, l/Jy,    0 

                                                         0,    0,    0, 1/Jz]; 

 

sdot   = A*s+B*du; 

sys = sdot; 

function sys=mdlUpdate(t,s,du) 

sys = []; 

function sys=mdlOutputs(t,s,du) 

sys = s; 

function sys=mdlGetTimeOfNextVarHit(t,s,du) 

 

sampleTime = 1;    %  Example, set the next hit to be one second later. 

sys = t + sampleTime; 

function sys=mdlTerminate(t,s,du) 

sys = []; 
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NONLINEAR PLANT MODEL IN QUATERNION ORIENTATION 

 

function [sys,x0,str,ts,simStateCompliance] = sfun_uav_nonlinear(t,s,u,flag, params) 

switch flag, 

 

  %%%%%%%%%%%%%%%%%% 

  % Initialization % 

  %%%%%%%%%%%%%%%%%% 

  case 0, 

    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes(params); 

 

  %%%%%%%%%%%%%%% 

  % Derivatives % 

  %%%%%%%%%%%%%%% 

  case 1, 

    sys=mdlDerivatives(t,s,u, params); 

 

  %%%%%%%%%% 

  % Update % 

  %%%%%%%%%% 

  case 2, 

    sys=mdlUpdate(t,s,u); 

 

  %%%%%%%%%%% 

  % Outputs % 

  %%%%%%%%%%% 

  case 3, 

    sys=mdlOutputs(t,s,u); 

 

  %%%%%%%%%%%%%%%%%%%%%%% 

  % GetTimeOfNextVarHit % 

  %%%%%%%%%%%%%%%%%%%%%%% 

  case 4, 

    sys=mdlGetTimeOfNextVarHit(t,s,u); 

 

  %%%%%%%%%%%%% 

  % Terminate % 

  %%%%%%%%%%%%% 

  case 9, 

    sys=mdlTerminate(t,s,u); 

 

  %%%%%%%%%%%%%%%%%%%% 

  % Unexpected flags % 

  %%%%%%%%%%%%%%%%%%%% 

  otherwise 

    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); 

 

end 
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% end sfuntmpl 

 

 

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes(params) 

 

sizes = simsizes; 

 

sizes.NumContStates  = 13; 

sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 13; 

sizes.NumInputs      = 4; 

sizes.DirFeedthrough = 0; 

sizes.NumSampleTimes = 1;   % at least one sample time is needed 

 

sys = simsizes(sizes); 

 

x0  = params.x0; 

str = []; 

 

ts  = [0 0]; 

 

simStateCompliance = 'UnknownSimState'; 

 

 

function sys=mdlDerivatives(t,s,u, params) 

 

m     = params.m; 

g     = params.g; 

 

Jx     = params.Jx; 

Jy     = params.Jy; 

Jz     = params.Jz; 

 

Jr    = params.Jr; 

l     = params.l; 

 

ktx    = params.ktx; 

kty    = params.kty; 

ktz    = params.ktz; 

 

 

krx    = params.krx; 

kry    = params.kry; 

krz    = params.krz; 

kf     = params.kf; 

km     = params.km; 
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xdot = s(4); 

ydot = s(5); 

zdot = s(6); 

 

q0 = s(7); 

q1 = s(8); 

q2 = s(9); 

q3 = s(10); 

 

p = s(11); 

q = s(12); 

r = s(13); 

 

 

u1 = u(1); 

u2 = u(2); 

u3 = u(3); 

u4 = u(4); 

 

wm1 = sqrt((1/4*kf)*u1 + (1/2*kf)*u3 + (1/4*km)*u4); 

wm2 = sqrt((1/4*kf)*u1 - (1/2*kf)*u2 - (1/4*km)*u4); 

wm3 = sqrt((1/4*kf)*u1 - (1/2*kf)*u3 + (1/4*km)*u4); 

wm4 = sqrt((1/4*kf)*u1 + (1/2*kf)*u3 - (1/4*km)*u4); 

 

 

minVal = 0; 

 

if (wm1 <= minVal) 

    wm1 = minVal; 

else 

    wm1; 

end 

 

if (wm2 <= minVal) 

    wm2 = minVal; 

else 

    wm2; 

end 

 

if (wm3 <= minVal) 

    wm3 = minVal; 

else 

    wm3; 

end 

 

if (wm4 <= minVal) 

    wm4 = minVal; 

else 

    wm4; 
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end 

 

wmr     = -wm1+wm2-wm3+wm4; 

 

if (wmr <= minVal) 

    wmr = minVal; 

else 

    wmr; 

end 

 

 

sdot = [                                                                                                xdot 

                                                                                                        ydot 

                                                                                                        zdot 

                                                                      -(ktx*xdot + u1*(2*q0*q2 + 2*q1*q3))/m 

                                                                      -(kty*ydot - u1*(2*q0*q1 - 2*q2*q3))/m 

                                                              -(ktz*zdot - g*m + u1*(2*q0^2 + 2*q3^2 - 1))/m 

                                                                            - (p*q1)/2 - (q*q2)/2 - (q3*r)/2 

                                                                              (p*q0)/2 - (q*q3)/2 + (q2*r)/2 

                                                                              (p*q3)/2 + (q*q0)/2 - (q1*r)/2 

                                                                              (q*q1)/2 - (p*q2)/2 + (q0*r)/2 

                                                             -(krx*p - l*u2 - Jy*q*r + Jz*q*r + Jr*q*wmr)/Jx 

                                                              (l*u3 - kry*q - Jx*p*r + Jz*p*r + Jr*p*wmr)/Jy 

                                                                           (u4 - krz*r + Jx*p*q - Jy*p*q)/Jz]; 

 

sys = sdot; 

function sys=mdlUpdate(t,s,u) 

sys = []; 

function sys=mdlOutputs(t,s,u) 

sys = s; 

function sys=mdlGetTimeOfNextVarHit(t,s,u) 

sampleTime = 1;    %  Example, set the next hit to be one second later. 

sys = t + sampleTime; 

function sys=mdlTerminate(t,s,u) 

sys = []; 
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LINEAR PLANT MODEL IN QUATERNION ORIENTATION 

 

function [sys,x0,str,ts,simStateCompliance] = sfun_uav_nonlinear(t,s,u,flag, params) 

switch flag, 

 

  %%%%%%%%%%%%%%%%%% 

  % Initialization % 

  %%%%%%%%%%%%%%%%%% 

  case 0, 

    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes(params); 

 

  %%%%%%%%%%%%%%% 

  % Derivatives % 

  %%%%%%%%%%%%%%% 

  case 1, 

    sys=mdlDerivatives(t,s,u, params); 

 

  %%%%%%%%%% 

  % Update % 

  %%%%%%%%%% 

  case 2, 

    sys=mdlUpdate(t,s,u); 

 

  %%%%%%%%%%% 

  % Outputs % 

  %%%%%%%%%%% 

  case 3, 

    sys=mdlOutputs(t,s,u); 

 

  %%%%%%%%%%%%%%%%%%%%%%% 

  % GetTimeOfNextVarHit % 

  %%%%%%%%%%%%%%%%%%%%%%% 

  case 4, 

    sys=mdlGetTimeOfNextVarHit(t,s,u); 

 

  %%%%%%%%%%%%% 

  % Terminate % 

  %%%%%%%%%%%%% 

  case 9, 

    sys=mdlTerminate(t,s,u); 

 

  %%%%%%%%%%%%%%%%%%%% 

  % Unexpected flags % 

  %%%%%%%%%%%%%%%%%%%% 

  otherwise 

    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); 

 

end 
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function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes(params) 

 

sizes = simsizes; 

 

sizes.NumContStates  = 13; 

sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 13; 

sizes.NumInputs      = 4; 

sizes.DirFeedthrough = 0; 

sizes.NumSampleTimes = 1;   % at least one sample time is needed 

 

sys = simsizes(sizes); 

 

x0  = params.x0; 

 

str = []; 

 

ts  = [0 0]; 

 

function sys=mdlDerivatives(t,s,u, params) 

m     = params.m; 

g     = params.g; 

 

Jx     = params.Jx; 

Jy     = params.Jy; 

Jz     = params.Jz; 

 

Jr    = params.Jr; 

l     = params.l; 

 

ktx    = params.ktx; 

kty    = params.kty; 

ktz    = params.ktz; 

 

 

krx    = params.krx; 

kry    = params.kry; 

krz    = params.krz; 

kf     = params.kf; 

km     = params.km; 

 

phi = 0; 

theta = 10*pi/180; 

psi = 10*pi/180; 

 

q0 = cos(phi/2)*cos(theta/2)*cos(psi/2) + sin(phi/2)*sin(theta/2)*sin(psi/2); 

q1 = sin(phi/2)*cos(theta/2)*cos(psi/2) - cos(phi/2)*sin(theta/2)*sin(psi/2); 
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q2 = cos(phi/2)*sin(theta/2)*cos(psi/2) + sin(phi/2)*cos(theta/2)*sin(psi/2); 

q3 = cos(phi/2)*cos(theta/2)*sin(psi/2) - sin(phi/2)*sin(theta/2)*cos(psi/2); 

 

p = 0; 

q = 0; 

r = 0; 

 

u1 = du(1); 

u2 = du(2); 

u3 = du(3); 

u4 = du(4); 

 

wm1 = sqrt((1/4*kf)*u1 + (1/2*kf)*u3 + (1/4*km)*u4); 

wm2 = sqrt((1/4*kf)*u1 - (1/2*kf)*u2 - (1/4*km)*u4); 

wm3 = sqrt((1/4*kf)*u1 - (1/2*kf)*u3 + (1/4*km)*u4); 

wm4 = sqrt((1/4*kf)*u1 + (1/2*kf)*u3 - (1/4*km)*u4); 

 

minVal = 0; 

 

if (wm1 <= minVal) 

    wm1 = minVal; 

else 

    wm1; 

end 

 

if (wm2 <= minVal) 

    wm2 = minVal; 

else 

    wm2; 

end 

 

if (wm3 <= minVal) 

    wm3 = minVal; 

else 

    wm3; 

end 

 

if (wm4 <= minVal) 

    wm4 = minVal; 

else 

    wm4; 

end 

 

wm1 = sqrt((1/4*kf)*u1 + (1/2*kf)*u3 + (1/4*km)*u4); 

wm2 = sqrt((1/4*kf)*u1 - (1/2*kf)*u2 - (1/4*km)*u4); 

wm3 = sqrt((1/4*kf)*u1 - (1/2*kf)*u3 + (1/4*km)*u4); 

wm4 = sqrt((1/4*kf)*u1 + (1/2*kf)*u3 - (1/4*km)*u4); 

wmr     = -wm1+wm2-wm3+wm4; 

if (wmr <= minVal) 
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    wmr = minVal; 

else 

    wmr; 

end 

 

A =   [ 0, 0, 0,      1,      0,      0,            0,            0,            0,            0,                         0,                          0,                 0 

        0, 0, 0,      0,      1,      0,            0,            0,            0,            0,                         0,                          0,                 0 

        0, 0, 0,      0,      0,      1,            0,            0,            0,            0,                         0,                          0,                 0 

        0, 0, 0, -ktx/m,      0,      0, -(2*q2*u1)/m, -(2*q3*u1)/m, -(2*q0*u1)/m, -(2*q1*u1)/m,                         0,                          0,                 

0 

        0, 0, 0,      0, -kty/m,      0,  (2*q1*u1)/m,  (2*q0*u1)/m, -(2*q3*u1)/m, -(2*q2*u1)/m,                         0,                          0,                 

0 

        0, 0, 0,      0,      0, -ktz/m, -(4*q0*u1)/m,            0,            0, -(4*q3*u1)/m,                         0,                          0,                 0 

        0, 0, 0,      0,      0,      0,            0,         -p/2,         -q/2,         -r/2,                     -q1/2,                      -q2/2,             -q3/2 

        0, 0, 0,      0,      0,      0,          p/2,            0,          r/2,         -q/2,                      q0/2,                      -q3/2,              q2/2 

        0, 0, 0,      0,      0,      0,          q/2,         -r/2,            0,          p/2,                      q3/2,                       q0/2,             -q1/2 

        0, 0, 0,      0,      0,      0,          r/2,          q/2,         -p/2,            0,                     -q2/2,                       q1/2,              q0/2 

        0, 0, 0,      0,      0,      0,            0,            0,            0,            0,                   -krx/Jx, -(Jz*r - Jy*r + Jr*wmr)/Jx,  (Jy*q - 

Jz*q)/Jx 

        0, 0, 0,      0,      0,      0,            0,            0,            0,            0, (Jz*r - Jx*r + Jr*wmr)/Jy,                    -kry/Jy, -(Jx*p - 

Jz*p)/Jy 

        0, 0, 0,      0,      0,      0,            0,            0,            0,            0,          (Jx*q - Jy*q)/Jz,           (Jx*p - Jy*p)/Jz,           -krz/Jz]; 

 

B = [                       0,    0,    0,    0 

                            0,    0,    0,    0 

                            0,    0,    0,    0 

       -(2*q0*q2 + 2*q1*q3)/m,    0,    0,    0 

        (2*q0*q1 - 2*q2*q3)/m,    0,    0,    0 

     -(2*q0^2 + 2*q3^2 - 1)/m,    0,    0,    0 

                            0,    0,    0,    0 

                            0,    0,    0,    0 

                            0,    0,    0,    0 

                            0,    0,    0,    0 

                            0, l/Jx,    0,    0 

                            0,    0, l/Jy,    0 

                            0,    0,    0, 1/Jz]; 

sdot   = A*s+B*du; 

 

sys = sdot; 

function sys=mdlUpdate(t,s,u) 

sys = []; 

 

function sys=mdlOutputs(t,s,u) 

sys = s; 

function sys=mdlGetTimeOfNextVarHit(t,s,u) 

sampleTime = 1;    %  Example, set the next hit to be one second later. 

sys = t + sampleTime; 

function sys=mdlTerminate(t,s,u) 

sys = []; 
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GENERATED MPC CODE FOR EULER ANGLE 

create MPC controller object with sample time 

mpc1 = mpc(mpc1_plant_C, 0.25); 

specify prediction horizon 

mpc1.PredictionHorizon = 20; 

specify control horizon 

mpc1.ControlHorizon = 2; 

specify nominal values for inputs and outputs 

mpc1.Model.Nominal.U = [6.37650038006904;0;0;0;2;2;2;2]; 

mpc1.Model.Nominal.Y = [0;0;-1;0;0;0;0;-1.41586750769674e-15;0;0;0;0]; 

specify weights 

mpc1.Weights.MV = [0 0 0 0]; 

mpc1.Weights.MVRate = [0.1 0.1 0.1 0.1]; 

mpc1.Weights.OV = [1 1 1 1 0 0 0 0 0 0 0 0]; 

mpc1.Weights.ECR = 100000; 

specify simulation options 

options = mpcsimopt(); 

options.MVSignal = mpc1_MVSignal; 

options.RefLookAhead = 'off'; 

options.MDLookAhead = 'off'; 

options.Constraints = 'on'; 

options.OpenLoop = 'off'; 
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MPC COST FUNCTION FOR EULER ANGLE  

function [f,dfdy,dfdu,dfddu,dfdslack] = mpcCustomCostFcn(y,yref,u,uref,du,v,slack,varargin) 

 

% Dimension 

p = size(y,1); 

nmv = size(u,2); 

ny = size(y,2); 

specify weights 

beta = 1; 

Wu = diag([0 0 0 0.5]*beta); 

Wdu = diag([0.1 0.1 0.1 0.1]/beta); 

Wy = diag([5 5 5 5 0 0 0 0 0 0 0 0]*beta); 

Wecr = 100000; 

 

% Cost Function 

f = sum(sum(((y-yref)*Wy).^2))+sum(sum((du*Wdu).^2))+sum(sum((u*Wu).^2))+Wecr*slack^2; 

 

% Gradients 

dfdy = (y-yref)*(Wy.^2); 

dfdu = zeros(p,nmv); 

dfddu = du*(Wdu.^2); 

dfdslack = Wecr*slack; 
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GENERATED MPC CODE FOR QUATERNION 

create MPC controller object with sample time 

mpc1 = mpc(mpc1_plant_C_1, 0.25); 

specify prediction horizon 

mpc1.PredictionHorizon = 20; 

specify control horizon 

mpc1.ControlHorizon = 2; 

specify nominal values for inputs and outputs 

mpc1.Model.Nominal.U = [6.37650038006904;0;0;0;1;1;1;1]; 

mpc1.Model.Nominal.Y = [0;0;0;0;0;0;1;0;0;0;0;0;0]; 

specify weights 

mpc1.Weights.MV = [0 0 0 0]; 

mpc1.Weights.MVRate = [0.1 0.1 0.1 0.1]; 

mpc1.Weights.OV = [1 1 1 1 0 0 0 0 0 0 0 0 0]; 

mpc1.Weights.ECR = 100000; 

specify simulation options 

options = mpcsimopt(); 

options.MVSignal = mpc1_MVSignal_1; 

options.RefLookAhead = 'off'; 

options.MDLookAhead = 'off'; 

options.Constraints = 'on'; 

options.OpenLoop = 'off'; 
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MPC COST FUNCTION FOR QUATERNION  

function [f,dfdy,dfdu,dfddu,dfdslack] = mpcCustomCostFcn(y,yref,u,uref,du,v,slack,varargin) 

 

% Dimension 

p = size(y,1); 

nmv = size(u,2); 

ny = size(y,2); 

 

% Desired Quaternion 

q1_d = yref(:,8); 

q2_d = yref(:,9); 

q3_d = yref(:,10); 

q0_d = sqrt((1 - (q1_d.^2+q2_d.^2+q3_d.^2)).^2); 

 

% Actual Quaternion 

q1_a = y(:,8); 

q2_a = y(:,9); 

q3_a = y(:,10); 

q0_a = sqrt((1 - (q1_a.^2+q2_a.^2+q3_a.^2)).^2); 

 

% Looping according to Prediction Horizon 

for i=1:p 

quat_err(:,i) = [ q0_d(i)     q1_d(i)    q2_d(i)    q3_d(i); 

                 -q1_d(i)     q0_d(i)    q3_d(i)   -q2_d(i); 

                 -q2_d(i)    -q3_d(i)    q0_d(i)    q1_d(i); 

                 -q3_d(i)     q2_d(i)   -q1_d(i)    q0_d(i)]*[q0_a(i);  q1_a(i);   q2_a(i);   q3_a(i)]; 

end 

 

quat = quat_err.'; 

specify weights 

beta = 1; % 0.36788; 

Wu = diag([0 0 0 0.5]*beta); 

Wdu = diag([0.1 0.1 0.1 0.01]/beta); 

 

 

Wy = diag([0.1 0.005 0.05 0 0 0 0 0 0 0.03 0 0 0]*beta); 

 

 

Wecr = 100000; 

 

 

yerror = [y(:, 1:6)-yref(:, 1:6) quat(:, 1:4) y(:, 11:13)-yref(:, 11:13)]; 

 

f = sum(sum(((yerror)*Wy).^2))+sum(sum((du*Wdu).^2))+sum(sum((u*Wu).^2))+Wecr*slack^2; 

% Gradients 
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dfdy = (y-yref)*(Wy.^2); 

dfdu = zeros(p,nmv); 

dfddu = du*(Wdu.^2); 

dfdslack = Wecr*slack; 


