Cardiac magnetic resonance assessment of diastolic dysfunction in acute coronary syndrome

By: Azarisman, SM [Azarisman, Shah M.]; Teo, KS [Teo, Karen S.]; Worthley, MI [Worthley, Matthew I.]; Worthley, SG [Worthley, Stephen G.]

JOURNAL OF INTERNATIONAL MEDICAL RESEARCH
Volume: 45 Issue: 2 Pages: 1640-1652 Special Issue: SI
DOI: 10.1177/0300060517698265
Published: DEC 2017
Document Type: Article

Abstract

Chest pain is an important presenting symptom. However, few cases of chest pain are diagnosed as acute coronary syndrome (ACS) in the acute setting. This results in frequent inappropriate discharge and major delay in treatment for patients with underlying ACS. The conventional methods of assessing ACS, which include electrocardiography and serological markers of infarct, can take time to manifest. Recent studies have investigated more sensitive and specific imaging modalities that can be used. Diastolic dysfunction occurs early following coronary artery occlusion and its detection is useful in confirming the diagnosis, risk stratification, and prognosis post-ACS. Cardiac magnetic resonance provides a single imaging modality for comprehensive evaluation of chest pain in the acute setting. In particular, cardiac magnetic resonance has many imaging techniques that assess diastolic dysfunction post-coronary artery occlusion. Techniques such as measurement of left atrial size, mitral inflow, and mitral annular and pulmonary vein flow velocities with phase-contrast imaging enable general assessment of ventricular diastolic function. More novel imaging techniques, such as T2-weighted imaging for oedema, T1 mapping, and myocardial tagging, allow early determination of regional diastolic dysfunction and oedema. These findings may correspond to specific infarcted arteries that may be used to tailor eventual percutaneous coronary artery intervention.

Keywords

Author Keywords: Acute coronary syndrome; diastolic dysfunction; cardiac magnetic resonance

KeyWords Plus: ACUTE MYOCARDIAL-INFARCTION; PULMONARY VEIN FLOW; LEFT ATRIAL VOLUME; DOPPLER-ECHOCARDIOGRAPHY; EMERGENCY-DEPARTMENT; PROGNOSTIC-SIGNIFICANCE; POWERFUL PREDICTOR; IMAGING TECHNIQUES; FILLING PRESSURES; MITRAL-VALVE

Author Information

Reprint Address: Azarisman, SM (reprint author)

Int Islamic Univ Malaysia, Med, Jalan Sultan Ahmad Shah, Kuantan 25200, Pahang, Malaysia.

Addresses:

[3] Int Islamic Univ Malaysia, Dept Internal Med, Pahang, Malaysia

E-mail Addresses: risman1972@hotmail.com

Publisher

SAGE PUBLICATIONS LTD, 1 OLIVER'S YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND

Journal Information

Impact Factor: Journal Citation Reports

Categories / Classification

Research Areas: Research & Experimental Medicine, Pharmacology & Pharmacy

Web of Science Categories: Medicine, Research & Experimental; Pharmacology & Pharmacy
1. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction
 CIRCULATION Volume: 109 Issue: 20 Pages: 2611-2616 Published: MAY 25 2004
 Times Cited: 162

 By: Anderson, Jeffrey L.; Adams, Cynthia D.; Antman, Elliott M.; et al.
 Group Author(s): 2007 Writing Comm Members; 2011 Writing Grp Members; ACC/AHA Task Force Members
 Times Cited: 272

3. Atrial dimensions in health and left ventricular disease using cardiovascular magnetic resonance
 By: Anderson, JL; Horne, BD; Pennell, DJ
 JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE Volume: 7 Issue: 4 Pages: 671-675 Published: 2005
 Times Cited: 34

4. MR IMAGING OF MOTION WITH SPATIAL MODULATION OF MAGNETIZATION
 By: AXEL, L; DOUGHERTY, L
 RADIOLOGY Volume: 171 Issue: 3 Pages: 841-845 Published: JUN 1989
 Times Cited: 846

5. Evaluation of Mitral inflow Velocity Profile: Optimal Through Plane Location for Mitral Inflow Assessment with Cardiac Magnetic Resonance
 By: Azarisman, SM; Wong, DT; Richardson, JD; et al.
 Exp Clin Cardiol Volume: 20 Pages: 975-1001 Published: 2014
 Times Cited: 3

6. Persistent diastolic dysfunction despite complete systolic functional recovery after reperfused a cute myocardial infarction demonstrated by tagged magnetic resonance imaging
 By: Azvedo, CF; Amado, LC; Kraitchman, Dl; et al.
 EUROPEAN HEART JOURNAL Volume: 25 Issue: 16 Pages: 1419-1427 Published: AUG 2004
 Times Cited: 65

7. Echocardiographic diastolic dysfunction and magnetic resonance infarct size in healed myocardial infarction treated with primary angioplasty
 By: Barbieri, Andrea; Bursi, Francesca; Politi, Luigi; et al.
 ECHOCARDIOGRAPHY JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES Volume: 25 Issue: 6 Pages: 575-583 Published: JUL 2008
 Times Cited: 8

8. CT imaging of myocardial perfusion: Possibilities and perspectives
 By: Becker, Alexander; Becker, Christoph
 JOURNAL OF NUCLEARCARDIOLOGY Volume: 20 Issue: 2 Pages: 289-296 Published: APR 2013
 Times Cited: 15

9. Long-term prognostic significance of left atrial volume in acute myocardial infarction
 By: Beinart, R; Beyka, V; Schwammenthal, E; et al.
 JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Volume: 44 Issue: 2 Pages: 327-334 Published: JUL 21 2004
 Times Cited: 179

10. ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: Executive summary and recommendations - A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina)
 By: Braunwald, E; Antman, EM; Beasley, JW; et al.
 Group Author(s): Amer Coll Cardiology; Amer Heart Assoc Task Force Practi; Comm Management Patients Unstable
 CIRCULATION Volume: 102 Issue: 10 Pages: 1139-1209 Published: SEP 5 2000
 Times Cited: 425

11. Evaluation of Left Ventricular Diastolic Function with Cardiac MR Imaging
 Times Cited: 51
<table>
<thead>
<tr>
<th>Times Cited</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Pages</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping</td>
<td>Chatziimavroudis, GP; Zhang, HS; Halliburton, SS; et al.</td>
<td>JOURNAL OF MAGNETIC RESONANCE IMAGING Volume 17 Issue 1 Pages: 65-71 Published: JAN 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>MR Myocardial Perfusion Imaging</td>
<td>Ceelho-Filho, Otavio R.; Rickers, Carsten; Kwang, Raymond Y.; et al.</td>
<td>RADIOLOGY Volume 266 Issue: 3 Pages: 701-715 Published: MAR 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department</td>
<td>Cury, Ricardo C.; Shash, Khalid; Nagurney, John T.; et al.</td>
<td>CIRCULATION Volume: 118 Issue: 8 Pages: 837-844 Published: AUG 19 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Diastolic dysfunction: Improved understanding using emerging imaging techniques</td>
<td>Daneshvar, Daniel; Wei, Janet; Talstrup, Kirsten; et al.</td>
<td>AMERICAN HEART JOURNAL Volume: 160 Issue: 3 Pages: 394-404 Published: SEP 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging - The Multi-Ethnic Study of Atherosclerosis (MESA)</td>
<td>Edvardsen, T; Rosen, BD; Pan, L; et al.</td>
<td>AMERICAN HEART JOURNAL Volume: 151 Issue: 1 Pages: 109-114 Published: JAN 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>British Cardiac Society Working Group on the definition of myocardial infarction</td>
<td>Fox, KAA; Birkhead, J; Wilcox, R; et al.</td>
<td>HEART Volume: 90 Issue: 6 Pages: 603-609 Published: JUN 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The role of cardiovascular imaging techniques in the assessment of patients with acute chest pain</td>
<td>Gani, Firooz; Jain, Diwakar; Lahiri, Avijit</td>
<td>NUCLEAR MEDICINE COMMUNICATIONS Volume: 28 Issue: 6 Pages: 441-449 Published: JUN 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Quantitative Tracking of Edema, Hemorrhage, and Microvascular Obstruction in Subacute Myocardial Infarction in a Porcine Model by MRI</td>
<td>Ghugre, Nilesh R.; Ramanan, Venkata; Pep, Mihaela; et al.</td>
<td>MAGNETIC RESONANCE IN MEDICINE Volume: 66 Issue: 4 Pages: 1129-1141 Published: OCT 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,384</td>
<td>ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation</td>
<td>Hamm, Christian W; Bassand, Jean-Pierre; Agewali, Stefan; et al. Group Author(s): ESC</td>
<td>EUROPEAN HEART JOURNAL Volume: 32 Issue: 23 Pages: 2999-3054 Published: DEC 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>VELOCITY-ENCODED CINE MRI IN THE EVALUATION OF LEFT-VENTRICULAR DIASTOLIC FUNCTION - MEASUREMENT OF MITRAL-VALVE AND PULMONARY VEIN FLOW VELOCITIES AND FLOW VOLUME ACROSS THE MITRAL-VALVE</td>
<td>Hartlal, J; Mostbeck, G; Foster, E; et al.</td>
<td>AMERICAN HEART JOURNAL Volume: 125 Issue: 4 Pages: 1054-1066 Published: APR 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>NUCLEAR MAGNETIC-RESONANCE IMAGING OF ACUTE MYOCARDIAL-INFARCTION IN DOGS - ALTERATIONS IN MAGNETIC-RELAXATION TIMES</td>
<td>Higgins, CB; Herkens, R; Lipton, M; et al.</td>
<td>AMERICAN JOURNAL OF CARDIOLOGY Volume: 52 Issue: 1 Pages: 184-188 Published: 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>341</td>
<td>Noninvasive estimation of left ventricular filling pressure by E/e ' is a powerful predictor of survival after acute myocardial infarction</td>
<td>Hillis, GS; Moller, JE; Pellikka, PA; et al.</td>
<td>JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Volume: 43 Issue: 3 Pages: 360-367 Published: FEB 4 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A comparison of left ventricular myocardial velocity in diastole measured by magnetic resonance and left ventricular filling measured by Doppler echocardiography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
25. Mitrval-Valve Flow Measured with Cine MR Velocity Mapping in Patients with Ischemic Heart Disease - Comparison with Doppler-Echocardiography
By: Karwatowski, SP; Brecker, SJD; Yang, GZ; et al.
EUROPEAN HEART JOURNAL Volume: 17 Issue: 5 Pages: 795-802 Published: MAY 1996

26. Atrial Contraction Is an Important Determinant of Pulmonary Venous Flow
By: Keren, G; Bier, A; Sherez, J; et al.
JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING Volume: 5 Issue: 1 Pages: 89-92 Published: JAN-FEB 1995

27. Usefulness of Left Ventricular Diastolic Dysfunction as a Predictor of One-Year Rehospitalization in Survivors of Acute Myocardial Infarction
By: Khumri, Taiyeb A; Reid, Kimberly J; Kosiborod, Mikhail; et al.
AMERICAN JOURNAL OF CARDIOLOGY Volume: 103 Issue: 1 Pages: 17-21 Published: JAN 2009

28. Temporal Evolution of Ischemic Damage in Rat-Brain Measured by Proton Nuclear-Magnetic-Resonance Imaging
By: Knight, RA; Ordidge, RJ; Helpern, JA; et al.
STROKE Volume: 22 Issue: 6 Pages: 802-808 Published: JUN 1991

29. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging
By: Kwong, RY; Schussheim, AE; Rehraj, S; et al.
CIRCULATION Volume: 107 Issue: 4 Pages: S31-S37 Published: FEB 4 2003

30. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance
By: Maceira, Alicia M; Cosin-Sales, Juan; Roughton, Michael; et al.
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE Volume: 12 Article Number: 65 Published: NOV 11 2010

Showing 30 of 57 View All in Cited References page