The potential influence of building optimization and passive design strategies on natural ventilation systems in underground buildings: The state of the art

By: Mukhtar, A; Yusoff, M.Z; Ng, KC

Abstract
Most of the underground buildings rely on mechanical ventilation systems for achieving an acceptable indoor thermal comfort level. In order to alleviate this problem, it is essential to incorporate a passive system in an underground building to reduce the overall building energy consumption. From the perspective of the indoor occupant, the Indoor Environmental Quality (IEQ) should be maintained at a reasonable level as well if the passive strategy is used in a building ventilation system. The above problem could be addressed by devising an integrated design procedure that combines both underground building simulation and design optimization methods. The review of this topic, however, is rather scarce in the open literature. Thus, this review paper assesses existing scientific literatures that address the potential influence of building optimization and passive design strategy on the IEQ level. The topics covered in this review paper are histories and design considerations of underground buildings, consideration factors required, concept of building ventilation system, IEQ level assessments reported by buildings' occupants, critical element in building optimization and passive design strategy in the underground building. From the current review, we have found that integrating both optimization approach and passive design strategy into building performance simulation is a promising technique in improving the IEQ level of the underground building. Moreover, the adoption of soil and natural ventilation can effectively reduce the energy consumption in underground conditioning systems. Indeed, there are several important factors that should be taken into account while designing an underground building. Also, there are a few passive designs that can improve thermal comfort and reduce energy consumption in underground buildings. All in all, the primary target of this paper is to assist building engineers and designers in designing an energy-efficient underground building. Meanwhile, the acceptable IEQ level could be maintained.

Keywords
Author Keywords: Underground building; Indoor Environmental Quality (IEQ); Building optimization; Passive building design

Author Information

Reprint Address: Mukhtar, A [reprint author]

Addresses:
[1] Int Islamic Univ Malaysia, Dept Mech Eng, Jalan Gombak, Kuala Lumpur 53100, Malaysia
[2] Univ Tenaga Nas, Coll Engn, Putrajaya Campus, Jalan I.KRAM UNITEN, Kajang 43000, Selangor Darul, Malaysia
[3] Univ Nottingham Malaysia Campus, Dept Mech Mat & Mfg Engn, Jalan Braga, Semenyih 43500, Selangor Darul, Malaysia

E-mail Addresses: asfanzal.mukhtar@gmail.com

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yayasan Tenaga Nasional (YTN)</td>
<td></td>
</tr>
</tbody>
</table>

Publisher
PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Journal Information
Impact Factor: Journal Citation Reports

Categories/Classification
Research Areas: Construction & Building Technology; Engineering
Web of Science Categories: Construction & Building Technology; Engineering, Civil

Use in Web of Science
Web of Science Usage Count
14
15

Last 180 Days Since 2013

Learn more

Citation Network

In Web of Science Core Collection

1 Times Cited

Create Citation Alert

All Times Cited Counts
203

Cited References

View Related Records

Most recently cited by:

Liu, Yanan; Xie, Yinlin; Chen, Jiaqi. Nonlinear dynamic analysis of solar multiplicity effect on underground ventilation in a typical underground structure. BUILDING AND ENVIRONMENT (2020)

Use of Web of Science

Web of Science Usage Count

14
15

This record is from:
Web of Science Core Collection
- Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.

See more data fields
<table>
<thead>
<tr>
<th>1.</th>
<th>Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMOSPHERIC MEASUREMENT TECHNIQUES Volume: 8 Issue: 1 Pages: 18-32 Published: 2015</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 68</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.</th>
<th>Optimization of the form of a building on an oval base</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Adamiski, Mariusz</td>
<td></td>
</tr>
<tr>
<td>BUILDING AND ENVIRONMENT Volume: 42 Issue: 4 Pages: 1632-1643 Published: APR 2007</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.</th>
<th>A review on natural ventilation applications through building facade components and ventilation openings in tropical climates</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Afsaki, Ardalan; Mahyudin, Norhayati; Mahmoud, Zakana Al-Chelik; et al.</td>
<td></td>
</tr>
<tr>
<td>ENERGY AND BUILDINGS Volume: 101 Pages: 289-362 Published: AUG 2015</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 49</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.</th>
<th>Performance assessment of earth pipe cooling system for low energy buildings in a subtropical climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY CONVERSION AND MANAGEMENT Volume: 106 Pages: 815-825 Published: DEC 2015</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.</th>
<th>The cooling potential of earth-air heat exchangers for domestic buildings in a desert climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Al-Aym, F.; Loveday, D.L.; Harby, VI</td>
<td></td>
</tr>
<tr>
<td>BUILDING AND ENVIRONMENT Volume: 41 Issue: 3 Pages: 235-244 Published: MAR 2006</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 132</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>Suitability of sunken courtyards in the desert climate of Kuwait</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Al-Marim, AA</td>
<td></td>
</tr>
<tr>
<td>ENERGY AND BUILDINGS Volume: 33 Issue: 2 Pages: 103-111 Published: JAN 2001</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.</th>
<th>A guideline for assessing the suitability of earth-sheltered mass housing in hot arid climates</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Al-Temeemi, AA; Haris, DJ</td>
<td></td>
</tr>
<tr>
<td>ENERGY AND BUILDINGS Volume: 36 Issue: 3 Pages: 251-260 Published: MAR 2004</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 38</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.</th>
<th>A review of underground building towards thermal energy efficiency and sustainable development</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Afsaki, Saqaff A.; Sim, S. C.; Efzan, M. N. Ervina</td>
<td></td>
</tr>
<tr>
<td>RENEWABLE & SUSTAINABLE ENERGY REVIEWS Volume: 60 Pages: 692-713 Published: JUL 2016</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.</th>
<th>An Air Distribution Index for Assessing the Thermal Comfort and Air Quality in Uniform and Nonuniform Thermal Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Almers, I.; Awbi, H. B.; Foda, E.; et al.</td>
<td></td>
</tr>
<tr>
<td>INDOOR AND BUILT ENVIRONMENT Volume: 22 Issue: 4 Pages: 618-639 Published: AUG 2013</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10.</th>
<th>Theory for natural ventilation by thermal buoyancy in one zone with uniform temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Andersen, KT</td>
<td></td>
</tr>
<tr>
<td>BUILDING AND ENVIRONMENT Volume: 38 Issue: 11 Pages: 1281-1288 Published: NOV 2003</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 44</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.</th>
<th>A review on simulation-based optimization methods applied to building performance analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Anh-Tuan Nguyen; Reuter, Sigrid; Rigo, Philippe</td>
<td></td>
</tr>
<tr>
<td>APPLIED ENERGY Volume: 113 Special Issue: 51 Pages: 1048-1058 Published: JAN 2014</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 426</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.</th>
<th>Earth shelters; A review of energy conservation properties in earth sheltered housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Anselm, AJ</td>
<td></td>
</tr>
<tr>
<td>Energy Conservation Published: October 31 2012</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.</th>
<th>Passive annual heat storage principles in earth sheltered housing, a supplementary energy saving system in residential housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Anselm, Akubue Jideofor</td>
<td></td>
</tr>
<tr>
<td>ENERGY AND BUILDINGS Volume: 40 Issue: 7 Pages: 1214-1219 Published: 2008</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>By: Asadi, Ehsan; da Silva, Manuel Gameiro; Antunes, Carlos Henggeler; et al.</td>
<td></td>
</tr>
<tr>
<td>BUILDING AND ENVIRONMENT Volume: 56 Pages: 370-378 Published: OCT 2012</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 134</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15.</th>
<th>Title: [not available]</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: TASHRAE 6212004ASHRAE Published: 2004</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.</th>
<th>Thermal environmental conditions for human occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: ASHRAE</td>
<td></td>
</tr>
<tr>
<td>Times Cited: 258</td>
<td></td>
</tr>
</tbody>
</table>
17. Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms
By: Artefio, Arianna, Pellemyn, Franco
Times Cited: 89

18. Ventilation and air distribution systems in buildings
By: Ach, H. B.
Times Cited: 1

19. A STUDY OF SOLAR CHIMNEY ASSISTED WIND TOWER SYSTEM FOR NATURAL VENTILATION IN BUILDINGS
By: Bansal, NK, Nathur, R, Bandari, MS
BUILDING AND ENVIRONMENT Volume: 23 Issue: 4 Pages: 495-500 Published: OCT 1994
Times Cited: 86

20. SOLAR CHIMNEY FOREHANDED STACK VENTILATION
By: Bansal, NK, Nathur, R, Bandari, MS
BUILDING AND ENVIRONMENT Volume: 28 Issue: 3 Pages: 373-377 Published: JUL 1993
Times Cited: 132

21. Title: [not available]
By: Barber, E. M., Kusuda, T., Reynolds, P. J., et al.
A Study of Air Distribution in Survival Shelters Using a Small-Scale Modeling Technique Published: 1972
Times Cited: 2

22. Energy saving method for improving thermal comfort and air quality in warm humid climates using isothermal high velocity ventilation
By: Bayrums, Mehannad
RENEWABLE ENERGY Volume: 114 Pages: 502-512 Part: B Published: DEC 2017
Times Cited: 10

23. Modern earth sheltered constructions: A paradigm of green engineering
By: Benardos, A., Artaizaladino, I., Katounakis, N.
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY Volume: 41 Pages: 46-52 Published: MAR 2014
Times Cited: 21

24. Performance analysis of an earth-to-air heat exchanger assisted by a wind tower for passive cooling of buildings in arid and hot climates
ENERGY CONVERSION AND MANAGEMENT Volume: 91 Pages: 1-11 Published: FEB 2015
Times Cited: 36

25. Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings
By: Benhammou, Mohammed; Draoua, Belkacem
RENEWABLE & SUSTAINABLE ENERGY REVIEWS Volume: 44 Pages: 348-355 Published: APR 2015
Times Cited: 40

26. Design and Analysis of Computer Experiments
By: Booker, A. J.
T AIAA USAF NASA ISS Pages: 118-128 Published: 1988
Times Cited: 14

27. Optimising the design of building envelopes for thermal performance
By: Brochaghem, N
AUTOMATION IN CONSTRUCTION Volume: 10 Issue: 1 Pages: 101-112 Published: NOV 2000
Times Cited: 55

28. EARTH SHELTERED STRUCTURES
By: Boyer, LL
ANNUAL REVIEW OF ENERGY Volume: 7 Pages: 201-219 Published: 1982
Times Cited: 2

29. DESIGN CONSIDERATIONS FOR UNDERGROUND BUILDINGS
By: Carmody, J., Sterling, R.
UNDERGROUND SPACE Volume: 8 Issue: 5-6 Pages: 352-362 Published: 1984
Times Cited: 9

30. Design Strategies to Alleviate Negative Psychological and Physiological Effects in Underground Space
By: Carmody, J. C., Sterling, R. L.
Tunnelling and Underground Space Technology Volume: 2 Issue: 1 Pages: 59-67 Published: 1987
Times Cited: 16