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ABSTRACT

This study investigates the performance of higher order moments, re-
alised from the model-free Bakshi-Kapadia-Madan (MFBKM). We con-
centrate on investigating higher order option-implied moments â vari-
ance, skewness and kurtosis, chosen in relation to contracts de�ned in
MFBKM, i.e. volatility, cubic, and quartic contract. The three ap-
proaches adopted in order to estimate the integrals of the de�ned MF-
BKM contracts are the basic (trapezoidal-rule), adapted (single-combined)
and advanced method (cubic-spline). The sample data is extracted from
DJIA index options data, which covers the period from January 2009 un-
til December 2015. The results show that the advanced method performs
poorly in estimating the MFBKM, especially in the case of skewness and
kurtosis integrals estimation. The advanced method outperforms the
other approaches in the case of the variance estimation. In estimating
both model-free skewness and kurtosis, the adapted method is found to
perform the best, instead.

Keywords: cubic-spline, higher order moments, model-free, options and
trapezoidal-rule.
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1. Introduction

The research on using option-implied moments as estimators to improve the
performance of a portfolio selection strategy is experiencing a growing interest
these recent years. The moments inferred from options can be variance, covari-
ance, skewness, volatility risk premium, beta, etc. For instance, Aït-Sahalia
and Brandt (2008) utilised the option-implied state prices in improving the per-
formance of portfolio selection and intertemporal consumption using implied
probability density functions and the martingale representation theory. They
recorded the di�erent performances induced by adopting the option-implied
moments compared to that of the historical moments. However they made no
attempt in investigating the optimal portfolio strategy based on the results.

The fact that option information is proven to e�ciently encapsulate deriva-
tive market perception has triggered many others on studying the optimal selec-
tion of portfolio by exploiting the option moments. A wide spectrum of study
tends to utilise historical return data in estimating the option moments. How-
ever the portfolio that is based on historical-data estimation has been found
to be poorly performed out-of-sample (DeMiguel et al. (2009)). Echoing to
this concern, this research utilises option moments implied by option prices,
rather than focusing on the use of historical data in improving option moments
estimated in constructing an optimal portfolio strategy.

Option-implied information is inferred from the option prices, hitherto is
referred as forward-looking option-implied moments. This approach can be per-
ceived as an alternative to the backward-looking historical data. Owing to its
forward-looking nature, these option-implied moments able to comprehensively
capture the derivative market perception better than that of the historical data
( See Kempf et al. (2014)). It is then expected that the estimation done based
on these forward-looking implied moments to perform superiorly in construct-
ing optimal portfolio. There are several aspects of study on the option-implied
moments used in selecting portfolios. One can either consider option-implied
volatility, correlation, skewness, risk premium, beta or covariance. This is
evident in a plethora of empirical study that attempt to estimate these option-
implied moments in a number of ways (Kostakis et al. (2011), Aït-Sahalia and
Brandt (2008), and DeMiguel et al. (2013)).

It is documented in DeMiguel et al. (2013) that the option-implied volatility,
risk premium and skewness perform extremely well in enhancing the portfolio
selection strategy. The authors considered another option-implied moments
in their paper, i.e. option-implied correlation. They showed that using the
option-implied correlation does not signi�cantly lead to an improved portfolio
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selection policy. They justi�ed this claim based on the lack of stability in the
covariance matrix when the historical time-series correlation is replaced with
option-implied correlation. This induces the magnitude of the o�-diagonal
elements inside the matrix to be larger than they should be.

So far in the literature there is not much attention paid on improving the
option-implied moments as an estimator in dealing with a portfolio selection
policy. The option-implied correlation was utilised by Buss and Vilkov (2012)
in solving the optimal portfolio problem. The estimation of the option-implied
correlation was then used in obtaining the beta coe�cient predictors. The
implied information was found to deliver better predictor. In similar vein, the
strategy was utilised in French et al. (1983). New family of estimators of the
covariance matrix was considered by Kempf et al. (2014). They constructed
the new estimators family and examined the performance power of the new
estimators in contrast with the historical benchmark. The authors pointed
out that the use of the new estimators developed in this study signi�cantly
lead to a better outperformed estimator compared to that of the historically
estimated benchmark. However they worked in the domain of fully-implied
covariance matrix and not on the option-implied covariance matrix. Related
�ndings were sought by Siegel (1995), Skintzi and Refenes (2005), Husmann and
Stephan (2007), Chang et al. (2011), as well as Baule et al. (2016). Thus, we
manifest the hybrid-estimators strategy as used in Buss and Vilkov (2012), by
considering both model-free and Black-Scholes-Merton (BSM) option pricing
model, which was developed by Black and Scholes (1973) and Merton (1973).

Realising that, this research di�erentiates itself from other existing liter-
ature by examining the performance of higher order moments, realised from
the model-free Bakshi-Kapadia-Madan (MFBKM). We concentrate on investi-
gating higher order option-implied moments â variance, skewness and kurtosis,
chosen in relation to contracts de�ned in MFBKM, i.e. volatility, cubic, and
quartic contract. The three approaches adopted in order to estimate the in-
tegrals of the de�ned MFBKM contracts are the basic, adapted and advanced
method. This study intends to empirically investigate the index options data,
speci�cally those that are able to directly proxy the global index options mar-
ket. For that reason, the Dow Jones Industrial Average (DJIA) index options
data traded on The Chicago Board Options Exchange (CBOE) is utilised in
this study. DJIA is the most cited and the most extensively accepted of the
stock market indices. The options consists of the 30-blue chipped companies
index and equity options which represent the most heavily traded and listed in
US. Today, the CBOE has became the largest options exchange in US, hence
has been acknowledged as the largest options market in the world. Owing to
that fact, this data is believed to be the best in re�ecting the US; hence the
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world index options market. The sample data considered in this study covers
the period from January 2009 until the end of 2015. The volatility is proxied
by the volatility implied by the Black-Scholes-Merton option pricing model.

For a better analysis comprehension, the rest of the research is drawn into a
number of sections. A brief background of study is already provided in the �rst
section. The data utilised in this paper is illustrated in Section 2. In Section
3, we detail out the methodology used in assessing the performance of Model-
free Bakshi-Kapadia-Madan (MFBKM). The main �ndings of this study are
presented in Section 4. Finally, we conclude in Section 5.

2. Data

This paper utilises all call and put options on the Dow Jones Industrial
Index (DJIA) traded daily on the Chicago Board Options Exchange (CBOE)
during the period of January 2009 until December 2015. The daily index data
retrieved from the DJIA are composed of trading date, expiration date, closing
price, exercise price and trading volume for each trading option. The underlying
price used in this study will utilise the closing price of the DJIA index, whereas
the actual option price is taken from the closing price of the option price. In
this study, we utilise the Dow Jones Industrial Average (DJIA) index options
data. The options consists of the 30-blue chipped companies index and equity
options which represent the most heavily traded and listed in US.

3. Methodology

Generally, this study relies on two core strands of literature, i.e. Bakshi et al.
(2003) and Buss and Vilkov (2012). The approaches used in the two studies
are mainly adopted in this research with several adjustments and modi�cations
come into consideration for a better MFBKM performance. In order to obtain
the option-implied moments values, we adopt the same methodology as in Buss
and Vilkov (2012), which is from the estimated moments of the market index
return. We control the noise embedded in the MFBKM by considering three
approaches. The MFBKM value is then compared against the realized higher
moments regressed from the historical values.
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3.1 Model-Free Bakshi-Kapadia-Madan

We calculate the option-implied moments based on the extraction approach
introduced in Bakshi et al. (2003). The moments include variance contract, cu-
bic contract, quartic contract, model-free implied volatility, as well as model-
free option implied skewness. We take into account the model-free framework
since the whole information of the BSM implied volatility smile can be consid-
ered using this model. Moreover, this model outperforms the BSM volatility
in foreseeing realized volatility.

We �rst compute the option-implied higher moments from the market index
data using the same methodology utilised in Bakshi et al. (2003). However,
the theoretical foundation behind these model-free higher moments is beyond
our scope. We, therefore, will not discuss it in this paper. The respective
computation of option-implied moments, as derived by Bakshi et al. (2003) are
as follows:

R(t, T ) ≡ lnS(t+ T )− lnS(t); (1)

V (t, T ) ≡ E∗t
{
e−rtR(t, T )2

}
; (2)

W (t, T ) ≡ E∗t
{
e−rtR(t, T )3

}
; (3)

X(t, T ) ≡ E∗t
{
e−rtR(t, T )4

}
. (4)

We let S(t) be the stock price at time t, r be the risk-free interest rate, K(t)
be the strike price at time t, and R(t,T) be the T -log return. C(t) and P(t)
are the price of call and put option, respectively, at time t. The model-free
option-implied volatility is simply the square root of Equation (2):

MFIV (t, T ) =
√
V (t, T ). (5)

The model-free option-implied skewness (MFIS) is obtained based from
Equations (1) to (4).

MFIS(t, T ) =
ertW (t, T )− 3µ(t, T )ertV (t, T ) + 2(µ(t, T ))3

(ertV (t, T )− (µ(t, T ))2)3/2
. (6)
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Besides, Bakshi et al. (2003) show that the three de�ned contracts can
attain the following forms:

V (t, τ) =

∫ ∞
St

2
(

1− ln
[
K
St

])
K2

C(t, τ ;K)dK

+

∫ St

0

2
(

1− ln
[
K
St

])
K2

P (t, τ ;K)dK;

(7)

W (t, τ) =

∫ ∞
St

6ln
[
K
St

]
− 3

(
ln
[
K
St

])2

K2
C(t, τ ;K)dK

−
∫ St

0

6ln
[
K
St

]
− 3

(
ln
[
K
St

])2

K2
P (t, τ ;K)dK;

(8)

X(t, τ) =

∫ ∞
St

12
(
ln
[
K
St

])2

− 4
(
ln
[
K
St

])3

K2
C(t, τ ;K)dK

+

∫ St

0

12
(
ln
[
K
St

])2

− 4
(
ln
[
K
St

])3

K2
P (t, τ ;K)dK.

(9)

The risk-neutral variance is depicted as:

V AR(t, τ) ≡ Eq
{

(Rt,τ − Eq [Rt,τ ])
2
}

; (10)

V AR(t, τ) = erτV (t, τ)− µ(t, τ)2. (11)

Recall that in Equation (6) the risk-neutral skewness is shown as

MFIS(t, τ)

≡ Eq{Rt,τ−Eq [Rt,τ ]3}
Eq{Rt,τ−Eq [Rt,τ ]2}3/2

=
erτW (t, τ)− 3erτµ(t, τ)V (t, τ) + 2µ (t, τ)

3[
erτV (t, τ)− µ (t, τ)

2
]3/2 .

(12)
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Whereas, the risk-neutral kurtosis is as follows:

MFIK(t, τ) ≡ Eq{(Rt,τ−Eq [Rt,τ ])4}
Eq{(Rt,τ−Eq [Rt,τ ])2}2 ; (13)

MFIK(t, τ) =
erτX(t, τ)− 4erτµ(t, τ)W (t, τ)[

erτV (t, τ)− µ (t, τ)
2
]2

+
6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4[

erτV (t, τ)− µ (t, τ)
2
]2 ,

(14)

in which µ-expectation is

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ). (15)

For record, Equations (1) and (2) are simply representing the variance con-
tract. The cubic contract is depicted by Equation (3); while Equation (4)
represents the quartic contract. This study focuses on the variance contract,
i.e. the model-free variance (MFV).

3.2 Basic Approach

As the name depicts, this basic approach is the simplest and the easiest
method that can be used in approximating the integrals. Its bottom line is
drawn based on the left-point rule. In that sense, it is quite straightforward in
obtaining the value for each higher order option-implied moment. In Bakshi
et al. (2003), the integrals approximation is done using the summation equa-
tions. This is equivalent to the left-point rule. For an illustration purpose, the
followings explain how the cubic contact is approximated.

We estimate the out-of-the-money calls taking the long position as:

(K−St)/∆K∑
j=1

w [St + j∆K]C (t, τ ;St + j∆K) ∆K, (16)

where the highest value that can be taken by call strike price is denoted as K
and w[K] is de�ned as:

w [K] ≡
6 ln

[
K
St

]
− 3

(
ln
[
K
St

])2

K2
, (17)
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while

v [K] ≡
2
(

1− ln
[
K
St

])
K2

, (18)

and

x [K] ≡
12
(

ln
[
K
St

])2

− 4
(

ln
[
K
St

])3

K2
. (19)

In similar sense, the estimation of out-of-the-money puts taking the long
position can be approximated as:

(St−K)/∆K∑
j=1

w [j∆K]P (t, τ ; j∆K) ∆K, (20)

in which

v [K] ≡
2
(

1 + ln
[
K
St

])
K2

, (21)

w [K] ≡ −
6 ln

[
K
St

]
+ 3

(
ln
[
K
St

])2

K2
, (22)

and

x [K] ≡
12
(

ln
[
K
St

])2

+ 4
(

ln
[
K
St

])3

K2
. (23)

In this study, instead of relying on this easy-yet-too-basic method, we rely
most on the trapezoidal-rule instead, adopting from methodology Dennis and
Mayhew (2002). The approximation based on this integration technique is
much more accurate and is not that complex to apply.

3.3 Adapted Approach

The contracts de�ned in MFBKM involve two separate integrals in order
to cater the di�erent option price of both calls and puts. However, this imbues
to a sequence of problem, especially in estimating the prices of all three con-
tracts. The adapted approach provides an initiative to this issue. Instead of
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considering the integrals of calls and puts as two separate integrals, this method
only considers one integral. The two separate integrals are combined and are
treated as one. This adapted approach treats the single-combined integrand
into whether the strike price falls at above or below the spot price.

3.4 Advanced Approach

This approach is the addition to the adapted approach, in which on top of
treating the contract separated integrals as one, it involves the use of smooth-
ing method. The smoothing technique is adopted from Jiang and Tian (2005).
Interpolation and extrapolation is applied on the implied volatility curve based
on the cubic-spline method. The new interpolated and extrapolated implied
volatility is then converted back into the option prices, adjusted based on their
relative strike price value compared to the spot price. Based on the new re-
trieved option prices, the higher order MFBKM moments are estimated.

4. Results and Discussions

In this section, the performance of how each moment is approximated
against the true values is compared based on three approaches considered: the
basic method, the adapted method; and the advanced method. By hypothesis,
the advanced method is supposedly to deliver the most accurate estimation of
the three methods.

The skewness and kurtosis in this study are set to be always λ1T = 0 and
λ2T = 3, respectively based on the normal distribution. The option prices of
both calls and puts, in which inclusive for both out-of-the-money (OTM) and
at-the-money (ATM) moneyness are estimated using the BSM option pricing
functions developed. The tick size of the strike prices is chosen to be $1,
ranging from K = $54 to $150. The model-free estimates generated by the
three methods - basic, adapted, and advanced - are reported in Table 1.

Table 1: Estimated Values of Model-Free Moments

Model-Free
Moments

True Values
Estimated Values

Basic Adapted Advanced

T-Period Variance (σT
2) 0.0225 0.0150 0.0154 0.0185

T-Period Skewness (λ1T ) 0.0000 -2.6522 -2.5748 -2.7093
T-Period Kurtosis (λ2T ) 3.0000 39.9404 38.3627 48.0483
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In order to better analyse how each estimated values generated from the
three methods deviate from the true values, the approximation error based
on the absolute method is presented in Table 2. It can be observed that the
basic method performs poorly in estimating all model-free moments in all three
methods. However, our hypothesis does not hold in the case of variance and
kurtosis estimation. It occurs in this study that the adapted approach is more
accurate compared to the advanced method.

Table 2: Absolute Error for Model-Free Moments Estimates

Model-Free
Moments

True Values
Absolute Error

Basic Adapted Advanced

T-Period Variance (σT
2) 0.0225 0.0075 0.0071 0.0040

T-Period Skewness (λ1T ) 0.0000 2.6522 2.5748 2.7093
T-Period Skewness (λ2T ) 3.0000 36.9404 35.3627 45.0483

Table 3: Relative Percentage Error for Model-Free Moments Estimates

Model-Free
Moments

True Values
Relative Percentage Error (%)
Basic Adapted Advanced

T-Period Variance (σT
2) 0.0225 0.33 0.32 0.18

T-Period Skewness (λ1T ) 0.0000 26.52* 25.75* 27.09*
T-Period Skewness (λ2T ) 3.0000 12.31 11.79 15.02

Nevertheless, looking at the number per se is quite unreliable. The relative
error by percentage is found to be much relevant since the di�erent in the
absolute error can be quite negligible by number per se. The relative percentage
error for model-free moments estimates is reported in Table 3. Special condition
is applied in the case of skewness, in which the true value is assumed to be 0.100
to cater the zero-denominator problem in �nding the percentage value of the
absolute error.

Based on both Table 2 and Table 3, it is obvious that the advanced ap-
proach fails to accurately estimate the model-free moments as stated in the
hypothesis in the case of skewness and kurtosis estimation. The percentage
di�erent between the adapted and advanced method itself is quite small, i.e.
1.35% di�erent in estimating skewness and 3.23% in estimating kurtosis. Thus,
the adapted method performs the best in estimating the model-free skewness
and kurtosis. With the small di�erent in percentage, however, a clear line can
be established in drawing conclusion that the advanced method somehow is
reliably quite accurate in all the cases of estimation
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5. Conclusions

This research di�erentiates itself from other existing literature by investi-
gating the performance of higher order moments, realised from the model-free
Bakshi-Kapadia-Madan (MFBKM). In that sense, this study focuses on investi-
gating three kinds of higher order option-implied moments - variance, skewness
and kurtosis. This study �nds that the advanced method unable to accurately
estimate the MFBKM considered as stated in the hypothesis, especially in the
case of skewness and kurtosis integrals estimation.

The hypothesis only holds for the variance estimation. The adapted method
is found to perform the best in estimating the model-free skewness and kurtosis.
This �nding is may be due to the error resulted from the choice of discrete strike
prices of $1. However, the expectation error is only 0.13%, which is far deviated
in the case of skewness and kurtosis estimation. It is suggested that further
denoising treatment to be done on the available data. This provides a future
avenue to �ll into. However, based on the percentage error analysis, the margin
error is quite insigni�cant. Thus, it is concluded that the advanced method is
consistently quite accurate in all cases of estimation done on the MFBKM.
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