Title: Generation of elementary gates and Bell's states using controlled adiabatic evolutions

Abstract: Fundamental quantum gates can be implemented effectively using adiabatic quantum computation or circuit model. Recently, Hen combined the two approaches to introduce a new model called controlled adiabatic evolutions [1. Hen, Phys. Rev. A, 91(2) (2015) 022309]. This model was specifically designed to implement one and two-qubit controlled gates. Later, Santos extended Hen's work to implement n-qubit controlled gates [A. C. Santos and M. S. Sarandy, Sci. Rep., 5 (2015) 15775]. In this paper, we discuss the implementation of each of the usual quantum gates, as well as demonstrate the possibility of preparing Bell's states using the controlled adiabatic evolutions approach. We conclude by presenting the fidelity results of implementing single quantum gates and Bell's states in open systems.

Language: English

Document Type: Article

Author Keywords: Controlled adiabatic evolutions; quantum gates; Bell's states

Address(es): [Benmachiche, Abderrahim; Messikh, Azeddine; Wahidin, Mohamed Ridza] Int Islamic Univ Malaysia, Dept Comp Sci, Jalan Gombak, Kuala Lumpur 51300, Malaysia.
[Turaev, Sherzod] Int Islamic Univ Malaysia, Dept Informat Sci, Jalan Gombak, Kuala Lumpur 51300, Malaysia.
[Bahloul, Derradji] Batna 1 Univ, Dept Phys, Biskra Rd, Batna 05010, Algeria.

Reprint Address: Benmachiche, A (reprint author), Int Islamic Univ Malaysia, Dept Comp Sci, Jalan Gombak, Kuala Lumpur 51300, Malaysia.

E-mail Addresses: ab3@live.fr; sellami2003@hotmail.com; sherzod@iium.edu.my; dbahloul@gmail.com; messikh@iium.edu.com; mridza@iium.edu.my

Publisher: WORLD SCIENTIFIC PUBL CO PTE LTD

Publisher Address: 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE

Web of Science Categories: Computer Science, Theory & Methods; Quantum Science & Technology; Physics, Particles & Fields; Physics, Mathematical

Research Areas: Computer Science; Physics

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia Education Ministry Research Grant</td>
<td>FRGS17-024-0590</td>
</tr>
</tbody>
</table>

This project was supported in part by the Malaysia Education Ministry Research Grant FRGS17-024-0590.

Output Date: 2019-07-31