Fuzzy-based Collision Avoidance System for Autonomous Driving in Complicated Traffic Scenarios

By: Rashed, AS (Rashed, Almutairi Saleh)1; Faris, W (Faris, Waleed)1; Fatai, S (Fatai, Sado)2

2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS)
Book Group Author(s): IEEE
Pages: 57-62
Published: 2018
Document Type: Proceedings Paper

Conference
Conference: IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)
Location: Shah Alam, MALAYSIA
Date: OCT 20, 2018
Sponsor(s): IEEE; IEEE Malaysia Sect Control Syst Soc Chapter; SCOPUS; PICon; Univ Teknologi Mara

Abstract
Collision avoidance is an important requirement for safe and autonomous driving in modern transportation systems. In this paper, we present a fuzzy-based control approach for smart and safe obstacle avoidance in complicated traffic scenarios where there are static and dynamic obstacles (e.g., broken-down vehicles, wrong parking vehicles, etc.). The fuzzy system makes an optimal decision to control the car throttle, braking, and steering to avoid collisions using the available information on the road map (i.e., the distance to obstacles, the current traffic in the neighboring lanes, the velocity of the front and rear car, etc.). Simulation results from three different scenarios involving a combination of dynamic and static obstacles or broken-down vehicles show that the fuzzy-controlled car can effectively avoid obstacles or collision in complicated traffic situations.

Keywords
Author Keywords: autonomous vehicle; fuzzy control; traffic; static obstacles; dynamic obstacles

Author Information
Reprint Address: Rashed, AS (reprint author)
Int Islamic Univ Malaysia, Dept Mech Eng, Kuala Lumpur, Malaysia.

Addresses:
[1] Int Islamic Univ Malaysia, Dept Mech Eng, Kuala Lumpur, Malaysia

Email Addresses: S.alobobi@gmail.com; waleed@iium.edu.my; abdfsado1@gmail.com

Publisher
IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA

Categories / Classification
Research Areas: Automation & Control Systems; Computer Science
Web of Science Categories: Automation & Control Systems; Computer Science, Artificial Intelligence

See more data fields
1. Decision making methods based on nonliner model predictive control for emergency collision avoidance in complex situations (ICCAS 2014)
 By: Bae, H.; Kang, Y.
 CONTR AUT SYST ICCAS Pages: 1424-1427 Published: 2014
 Publisher: IEEE
 Times Cited: 1

2. Three Decades of Driver Assistance Systems Review and Future Perspectives
 By: Bengler, Klaus; Dietmayer, Klaus; Faerber, Berthold; et al.
 IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE Volume: 6 Issue: 4 Pages: 6-22 Published: WIN 2014
 Times Cited: 184

3. Autonomous driving in urban environments: approaches, lessons and challenges
 By: Campbell, Mark; Egerstedt, Magnus; How, Jonathan P.; et al.
 PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES Volume: 368 Issue: 1928 Pages: 4649-4672 Published: OCT 13 2010
 Times Cited: 83

4. Emergency collision avoidance maneuver based on nonliner model predictive control
 By: Choi, C.; Kang, Y.; Lee, S.
 VEH EL SAF ICVES 201 Pages: 393-398 Published: 2012
 Publisher: IEEE
 Times Cited: 1

5. Optimal fuzzy control of autonomous robot car
 By: Farthi, O.; Chervenkov, Y.
 INTELLIGENT SYSTEMS Volume: 1 Article Number: 4-62-4-65 Published: 2008
 Publisher: IEEE
 Times Cited: 1

6. Dynamic obstacle avoidance approach for car-like robots in dynamic environments
 By: Hashim, M.S.M.; Tien-Fu Lu; Basri, H.H.
 2012 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAEI) Pages: 130-5 Published: 2012
 Times Cited: 3

7. FPGA Based Fuzzy Control Technique for Obstacle Avoidance
 By: Kapre, Vinod; Jharia, Bhavana; Thakur, S. S.
 Times Cited: 1

8. Optimal vehicle dynamics control for combined longitudinal and lateral autonomous vehicle
 By: Katriniok, A.; Maschuw, J.P.; Christen, F.; et al.
 CONTR C ECC 2013 EUR Pages: 974-979 Published: 2013
 Publisher: IEEE
 [Show additional data]
 Times Cited: 1

9. FUZZY CONTROL OF A MOBILE ROBOT FOR OBSTACLE AVOIDANCE
 By: TAKEUCHI, T; NAGAI, Y; ENOMOTO, N
 INFORMATION SCIENCES Volume: 45 Issue: 2 Pages: 231-248 Published: JUL 1988
 Times Cited: 23

10. Research advances in intelligent collision avoidance and adaptive cruise control
 By: Vahidi, A; Eskandarian, A
 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS Volume: 4 Issue: 3 Pages: 143-153 Published: SEP 2003
 Times Cited: 333

Showing 10 of 10 View All in Cited References page