A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method (Article) (Open Access)

Mt Aznam, S.² Che Ghani, N.A.¹ Chowdhury, M.S.H.²
¹Science in Engineering Department, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur, 50728, Malaysia
²Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, 50603, Malaysia

Abstract

The aim of this paper is to study the new application of Haar wavelet quasilinearization method (HWQM) to solve one-dimensional nonlinear heat transfer of fin problems. Three different types of nonlinear problems are numerically treated and the HWQM solutions are compared with those of the other method. The effects of temperature distribution of a straight fin with temperature-dependent thermal conductivity in the presence of various parameters related to nonlinear boundary value problems are analyzed and discussed. Numerical results of HWQM gives excellent numerical results in terms of competitiveness and accuracy compared to other numerical methods. This method was proven to be stable, convergent and, easily coded. © 2019 The Authors

SciVal Topic Prominence

Topic: Differential equations | Partial differential equations | Legendre wavelets
Prominence percentile: 72.146

Author keywords

Fin problem | Haar wavelet | Nonlinear equation | Quasilinearization method | Temperature-dependent thermal conductivity

Funding details

Funding sponsor | Funding number | Acronym
International Islamic University Malaysia

Funding text

The authors are grateful for the financial support from the International Islamic University Malaysia. This work was performed under IIUM Research Initiative Grant Scheme (RIGS) with Grant No. RIGS17-081-0656. The authors are indebted to Dr. Amran Hussin for his guidance and support. The authors also gratefully thank the Referee for the constructive comments and recommendations which definitely help to improve the readability and quality of this paper.

7 Chowdhury, M.S.H., Hashim, I.
Analytical solutions to heat transfer equations by homotopy-perturbation method revisited
doi: 10.1016/j.physleta.2007.09.015

Application of Homotopy Perturbation Method for Heat and Mass Transfer in the Two-Dimensional Unsteady Flow Between Parallel Plates

9 Chowdhury, M.S.H., Hashim, I., Abdulaziz, O.
Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems
doi: 10.1016/j.cnsns.2007.09.005

10 Chen, C.F., Hsiao, C.H.
Haar wavelet method for solving lumped and distributed-parameter systems

11 Lepik, Ü., Tamme, E.
Application of the Haar Wavelets for solution of linear integral equations

12 Lepik, Ü.
Numerical solution of differential equations using Haar wavelets
doi: 10.1016/j.matcom.2004.10.005

13 Lepik, Ü.
Application of the Haar wavelet transform to solving integral and differential equations
14 Lepik, Ü., Tamme, E.
Solution of nonlinear Fredholm integral equations via the Haar wavelet method

15 Lepik, U.
Numerical solution of evolution equations by the Haar wavelet method
doi: 10.1016/j.amc.2006.07.077
View at Publisher

16 Lepik, U.
Solving integral and differential equations by the aid of non-uniform Haar wavelets
doi: 10.1016/j.amc.2007.08.036
View at Publisher

17 Majak, J., Pohlak, M., Eerme, M., Lepikult, T.
Weak formulation based Haar wavelet method for solving differential equations
doi: 10.1016/j.amc.2009.01.089
View at Publisher

18 Aziz, I., Siraj-Ul-Islam, Khan, W.
Quadrature rules for numerical integration based on Haar wavelets and hybrid functions
(Open Access)
doi: 10.1016/j.camwa.2011.03.043
View at Publisher

19 Chang, P., Piau, P.
Haar wavelet matrices designation in numerical solution of ordinary differential equations

20 Ezzati, R., Sadatrasoul, S.M.
On numerical solution of two-dimensional nonlinear Urysohn fuzzy integral equations based on fuzzy Haar wavelets
http://www.journals.elsevier.com/fuzzy-sets-and-systems/
doi: 10.1016/j.fss.2016.08.005
View at Publisher

21 Hariharan, G., Kannan, K.
Haar wavelet method for solving some nonlinear Parabolic equations
doi: 10.1007/s10910-010-9724-0
View at Publisher
A two-dimensional Haar wavelets method for solving systems of PDEs

doi: 10.1016/j.amc.2016.07.032
View at Publisher

Aziz, I., Siraj-ul-Islam, Asif, M.
Haar wavelet collocation method for three-dimensional elliptic partial differential equations

View at Publisher

Kilicman, A., Al Zhour, Z.A.A.
Kronecker operational matrices for fractional calculus and some applications

doi: 10.1016/j.amc.2006.08.122
View at Publisher

Lepik, U.
Solving fractional integral equations by the Haar wavelet method

View at Publisher

Li, Y.-L., Ge, H.-M., Zhao, W.-W.
Haar wavelet-based simulation of the fractional-order systems

ISBN: 978-142446712-9
doi: 10.1109/WCICA.2010.5553855
View at Publisher

Mt Aznam, S., Chowdhury, M.S.H.
Generalized Haar wavelet operational matrix method for solving hyperbolic heat conduction in thin surface layers

http://www.elsevier.com/wps/find/journaldescription.cws_home/725996/description#description
doi: 10.1016/j.rinp.2018.08.021
View at Publisher

Wu, J.-L., Chen, C.-H., Chen, C.-F.
Numerical inversion of Laplace transform using Haar wavelet operational matrices

doi: 10.1109/81.903196
View at Publisher

Mt Aznam, S., Hussin, A.
Numerical method for inverse Laplace transform with Haar wavelet operational matrix
30. Hsiao, C.-H.
Numerical inversion of laplace transform via wavelet in partial differential equations

doi: 10.1002/num.21825
View at Publisher

31. Bellman, R.E., Kalaba, R.E.
Quasilinearization and nonlinear boundary-value problems
American Elsevier Publishing Company

32. Saeed, U., Rehman, M.U.
Haar wavelet-quasilinearization technique for fractional nonlinear differential equations

doi: 10.1016/j.amc.2013.07.018
View at Publisher

33. Jiwari, R.
A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation

doi: 10.1016/j.cpc.2012.06.009
View at Publisher

34. Siri, Z., Ghani, N.A.C., Kasmani, R.M.
Heat transfer over a steady stretching surface in the presence of suction (Open Access)

http://www.springerlink.com/content/1687-2770/
View at Publisher

35. Che Ghani, N.A., Siri, Z.
MHD flow of Carreau nanofluid over a stretching surface with suction/injection and slip effects by using Haar wavelet quasilinearization method (Open Access)

http://iopscience.iop.org/journal/1742-6596
doi: 10.1088/1742-6596/1139/1/012073
View at Publisher

36. Aznam, S.
(2012)

45 Moradi, A.
Analysis solution for fin with temperature dependent heat transfer coefficient

46 Abbasbandy, S., Shivanian, E.
Exact analytical solution of a nonlinear equation arising in heat transfer
doi: 10.1016/j.physleta.2009.11.062
View at Publisher

47 Arslanturk, C.
A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity
View at Publisher

48 Rajabi, A.
Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity
doi: 10.1016/j.physleta.2006.11.062
View at Publisher

49 Sobamowo, M.G.
Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin's method of weighted residual
http://www.journals.elsevier.com/applied-thermal-engineering/
doi: 10.1016/j.applthermaleng.2015.11.076
View at Publisher

50 Moradi, A., Ahmadikia, H.
Analytical solution for different profiles of fin with temperature-dependent thermal conductivity (Open Access)
doi: 10.1155/2010/568263
View at Publisher

© Copyright 2019 Elsevier B.V., All rights reserved.