Magnetically plucked piezoelectric energy harvester via hybrid kinetic motion

Azam, H.*, Hanif, N.H.H.M.*a, *b, Ralib, A.A.M.

aDepartment of Mechatronics Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur, 50728, Malaysia

bDepartment of Electronic and Computer Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur, 50728, Malaysia

Abstract

Piezoelectric energy harvesting is a possible breakthrough to reduce the global issue of electronic waste as they can efficiently convert the ambient vibration to the electrical energy without any additional power. This work presents the design and development of a magnetically plucked piezoelectric energy harvester that is capable of transforming vibration from ambient sources into electricity. It focuses on a magnetically plucked piezoelectric beam as an alternative to the mechanically induced harvesters, as the latter are subjected to wear and tear. A prototype comprising of a 40 mm PZT-5H piezoelectric beam with a permanent magnet mounted at one end of the beam, as well as a series of permanent magnets of same types attached on an eccentric rotor was developed along with a National Instruments® data acquisition device. Mean output voltages of 2.98 V, 1.76 V and 0.34 V were recorded when the eccentric rotors were slowly rotated at 8.4 rad/s with increasing distances of 5 mm, 7.5 mm and 10 mm respectively, between the magnets on the rotor and the beam. These results have proven that voltage could also be
Priya, S.
Advances in energy harvesting using low profile piezoelectric transducers
doi: 10.1007/s10832-007-9043-4
View at Publisher

Poulin, G., Sarrute, E., Costa, F.
Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system
doi: 10.1016/j.sna.2004.05.013
View at Publisher

Pozzi, M., Zhu, M.
Plucked piezoelectric bimorphs for knee-joint energy harvesting: Modelling and experimental validation