Motion capture sensing techniques used in human upper limb motion: a review

By: Yahya, M [Yahya, Muhamma][1], Shah, JA [Shah, Jawad Ali][1], Kadir, KA [Kadir, Kusnarioh Abdul][1], Yusof, ZM [Yusof, Zulkhairi M][1], Khan, S [Khan, Sheraz][2], Wani, A [Wana, Anil][3]

Abstract

Purpose Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer space and under water navigation systems, sea water exploration pursuits, human machine interaction and learning software to help teachers of sign language. The purpose of this paper is to help the researchers to select specific MoCap system for various applications and the development of new algorithms related to upper limb motion. Design/methodology/approach This paper provides an overview of different sensors used in MoCap and techniques used for estimating human upper limb motion. Findings The existing MoCaps suffer from several issues depending on the type of MoCap used. These issues include drifting and placement of inertial sensors, occlusion and jitters in Kinect, noise in electromyography signals and the requirement of a well-structured, calibrated environment and time-consuming task of placing markers in multiple camera systems. Originality/value This paper outlines the issues and challenges in MoCaps for measuring human upper limb motion and provides an overview on the techniques to overcome these issues and challenges.

Keywords

Author Keywords: Motion estimation; Motion capture system; Upper limb; Upper limb motion

KeyWords Plus: INERTIAL SENSORS; JOINT ANGLE; MOVEMENT; TRACKING; KINECT; STABILITY; FUSION; RANGE

Author Information

Reprint Address: Shah, JA (reprint author)
Univ Kuala Lumpur, British Malaysian Inst, Dept Elect & Elec, Gombak, Malaysia.

Addresses:
1. Univ Kuala Lumpur, British Malaysian Inst, Dept Elect & Elec, Gombak, Malaysia
2. Int Islamic Univ Malaysia, Kulliyyah Engn, Kuala Lumpur, Wilayah Perseku, Malaysia
3. Univ Kuala Lumpur, Kuala Lumpur, Malaysia

E-mail Addresses: jawad@unikl.edu.my

Funding

Funding Agency
Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Malaysia

See more data fields

Cited References: 51

Showing 30 of 51 View All in Cited References page
1. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter
 By: Atoze, Arash; Saalami, H.; Alany, A.
 JOURNAL OF BIOMECHANICAL ENGINEERING/TRANSACTIONS OF THE ASME Volume: 138 Issue: 3 Article Number: 031005 Published: SEP 2016

2. Quantitative Assessment of Upper Limb Motion in Neurorehabilitation Utilizing Inertial Sensors
 By: Bai, Lu; Pepper, Matthew G.; Yan, Yong, et al.
 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Volume: 23 Issue: 2 Pages: 232-243 Published: MAR 2015

3. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification
 By: Biswas, Dipayan; Cranny, Andy; Gupta, Nayaab, et al.
 HUMAN MOVEMENT SCIENCE Volume: 40 Pages: 58-76 Published: APR 2015

4. Vision based games for upper limb stroke rehabilitation
 By: Burke, J.; Morrow, P.; McNeill, M.D.J., et al.
 MACHVIS IM PROC C 2 Published: 2008
 Publisher: IEEE
 [Show additional data]

5. Leap Motion Evaluation for Assessment of Upper Limb Motor Skills in Parkinson’s Disease
 By: Butt, A.; Resen, L.E.; Deloets, C., et al.
 2017 INT C ROB I Published: 2017
 Publisher: IEEE
 [Show additional data]

6. Joint amplitude MEMS based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study
 By: Callejas-Guerrero, Mauro; Gutierrez, Rafael M.; Hernandez, Andres I.
 JOURNAL OF BODYWORK AND MOVEMENT THERAPIES Volume: 21 Issue: 3 Pages: 574-581 Published: JUL 2017

7. A survey of depth and inertial sensor fusion for human action recognition
 By: Chen, Chen; Jafari, Ramezeh; Kehtaramavaz, Nasser
 MULTIMEDIA TOOLS AND APPLICATIONS Volume: 76 Issue: 3 Pages: 4405-4425 Published: FEB 2017

8. Title: [not available]
 By: Chen, X.
 Human motion analysis with wearable inertial sensors Published: 2013

9. The accuracy of the Microsoft Kinect in joint angle measurement
 By: Choppin, S; Lane, B; Wheat, J.
 Sport Tech (E) Volume: 7 Pages: 98-105 Published: 2014

10. Measurements and Sensors for Motion Tracking in Motor Rehabilitation
 By: De Vito, Luca; Pontelade, Ottavio; Rappuane, Serge
 IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE Volume: 17 Issue: 3 Pages: 30-38 Published: JUN 2014

11. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm
 By: Eliyeh, Mahmoud; McNamara, James
 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Volume: 62 Issue: 7 Pages: 1759-1767 Published: JUL 2015

12. Research and literature review on developing motion capture system for analyzing athletes action
 By: Fang, H.; Kusung, B.
 2015 INT C ED TECHN Published: 2015

13. Biomechanical validation of upper body and lower body joint movements of kinect motion capture data for rehabilitation treatments
 By: Fernández Baena, A.; Susin, A.; Iñigada, X.
 2012 INT C INT NET Published: 2012
 Publisher: IEEE

14. Human motion capture sensors and analysis in robotics
 By: Field, Matthew; Pan, Zengzi; Stirling, David, et al.
 INDUSTRIAL ROBOT THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION Volume: 38 Issue: 2 Pages: 163-171 Published: 2011

15. Real-time static gesture recognition for upper extremity rehabilitation using the leap motion
 By: Giepe, S.N.; Brossolle, A.; Makedon, F.
 INT C DIG HUM MOD AP Published: 2015
 Publisher: Springer

16. Non uniform Embedding based on Relevance Analysis with reduced computational complexity: Application to the detection of pathologies from biosignal recordings
 By: Gmez-Garcia, Jorge A.; Godine-Llorente, Juan I.; Castellanos-Dominguez, German