PLL-BASED 3 PHI INVERTER CIRCUIT FOR MICROGRID SYSTEM OPERATED BY ELECTROSTATIC GENERATOR

By: Rahman, T (Rahman, Tawfick) 1, Motakabber, S M A (Motakabber, S M A) 1, Ibn Ibrahimy, M (Ibn Ibrahimy, Muhammad) 1, Alam, A H M Z (Alam, A H M Z) 1

Abstract
A current source control-based PLL (phase lock loop) technique is one of the most efficient methods for modern 3-Phi synchronized grid power systems. When an inverter circuit is driven by an electrostatic generator with wind power, it encounters some problems, such as static and dynamic turn-on-off switching losses, unbalanced source voltage, low continuous current, higher frequency harmonic distortion, phase angle imbalance, etc. To solve these problems, a series of connected switching inverter module techniques is proposed. It is not only a traditional inverter system, but it also works as a low-frequency ripple current inverter with lower switching losses. An new topology of phase synchronous inverter (PSI) is designed using a PLL current source controller. The input voltage source of the PSI is a high DC voltage from an electrostatic generator (ESG). The modified ESG is capable of generating the HVDC and a continuous moderate amount of current. The proposed switching topology of the inverter is able to control the microgrid power as well as reduce the dynamic and static switching loss. It also reduces the high-frequency harmonic distortion and improves the phase angle error. The output LCL lowpass filter scheme of the inverter is designed to reduce the total harmonic distortion by 1.52%. The PSI circuit is designed and simulated using MATLAB. In the developed system, the input voltage of 8 kVDC, microgrid frequency of 50Hz, switching frequency of the carrier of 10 kHz, and modulation index of 0.85 are considered to be implemented. The proposed novel microgrid-connected PSI switching module design technique has significantly enhanced the power stability. The overall system efficiency improved by 95.32%.

Keywords
Author Keywords: PSI, PLL, current controller, PWM controller, inverter switching topology, output LCL filter, microgrid
Key Words Plus: LCL-FILTER, CONTROLLER, LOOP

Use in Web of Science
Web of Science Usage Count
0
Since 2013

Cited References

See more data fields

Cited References: 17
Showing 1 of 17

1. Finite Position Set-Phase Locked Loop for Sensorless Control of Direct-Driven Permanent-Magnet Synchronous Generators
By: Abdelrahem, Mohamed; Hackl, Christoph M.; Kennel, Ralph
IEEE TRANSACTIONS ON POWER ELECTRONICS Volume: 33 Issue: 4 Pages: 3087-3105 Published: APR 2018
2. A Lyapunov Stability Theory-Based Control Strategy for Three-Level Shunt Active Power Filter
 By: Ceo, Yijia, Xu, Yong; Li, Yong; et al.
 ENERGIES Volume: 10 Issue: 1 Article Number: 112 Published: JAN 2017

3. Lyapunov Function-Based Current Controller to Control Active and Reactive Power Flow from a Renewable Energy Source to a Generalized Three-Phase Microgrid System
 By: Dasgupta, S; Novik; Mohan, Shankar Narayan; Sahno, Sanjib Kumar; et al.
 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Volume: 60 Issue: 2 Pages: 799-813 Published: FEB 2013

4. Tuning of a PI MR Controller Based on Differential Evolution Metaheuristic Applied to the Current Control Loop of a Shunt APF
 By: Galan Cesta, Bruno; Leandro; Bacon, Vinicius Darini; Oliveira da Silva, Sergio A.; et al.
 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Volume: 64 Issue: 6 Pages: 4751-4761 Published: JUN 2017

5. Damping techniques for grid-connected voltage source converters based on LCL filter: An overview
 By: Gomez, Camilo C.; Cupertino, Allan F.; Pereira, Heverton A.
 RENEWABLE & SUSTAINABLE ENERGY REVIEWS Volume: 81 Pages: 116-135 Part: 1 Published: JAN 2018

6. Stability Analysis and Active Stabilization of On-Board DC Power Converter System with Input Filter
 By: Huang, Yifeng; Pang, Shenghao; Nahid, Mohsen; Babak, et al.
 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Volume: 65 Issue: 1 Pages: 790-799 Published: JAN 2018

7. Generalized LCL Filter Design Algorithm for Grid-Connected Voltage Source Inverter
 By: Jafarali, S; Spath, Hans-Fein; Meen
 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Volume: 64 Issue: 3 Pages: 1905-1915 Published: MAR 2017

8. Improved Frequency Regulation in an Islanded Mixed Source Microgrid Through Coordinated Operation of DERs and Smart Loads
 By: Mondal, Abhijit; Mondal, Madhur; Saha, S; et al.
 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS Volume: 54 Issue: 1 Pages: 112-120 Published: JAN-FEB 2018

9. Metastatic neoplasms to the thyroid diagnosed by fine-needle aspiration/core needle biopsy: Clinicopathologic and cytomorphologic correlation
 By: Rahman, Mebeen, Okada, Ashley Rae; Guan, Kevin; et al.
 CYTOJOURNAL Volume: 14 Article Number: 16 Published: JUN 2020

10. An Enhanced Zero Crossing Based HVDC Phase Synchronous Inverter for Electrostatic Generator in Microgrid Systems
 Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Volume: 5 Issue: 4 Pages: 285-284 Published: 2017
 [Show additional data]

11. A Zero Crossing PWM Controller of a Full Bridge Single Phase Synchronous Inverter for Microgrid Systems
 International Journal of Engineering and Information Systems Volume: 1 Issue: 6 Pages: 202-211 Published: 2017

12. Synchronization of output voltage waveforms in phase synchronous inverter with LCL filter for smart grid systems
 By: Rahman, T.; Ibrahimy, M. I.; Metakabber, S. M. A.
 3 INT C SCI SOC RES Pages: 6-7 Published: 2017

13. Three Phase Three Layer Phase Synchronous Inverter for Microgrid System
 By: Rahman, Tawfikur; Ibrahimy, Muhammad I.; Metakabber, S. M. A.; et al.
 2014 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE) Pages: 44-47 Published: 2014

14. Design of a Switching Mode Three Phase Inverter
 By: Rahman, Tawfikur, Metakabber, S. M. A.; Ibrahimy, M. I.
 PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE 2016) Pages: 155-160 Published: 2016

15. Phase Synchronous Inverter for Microgrid System
 By: Rahman, Tawfikur, Metakabber, S. M. A.; Ibrahimy, M. I.
 PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE 2016) Pages: 167-171 Published: 2016

16. Low Noise Inverter for Poly Phase Microgrid System
 By: Rahman, Tawfikur, Metakabber, S. M. A.; Ibrahimy, M. I.
 PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE 2016) Pages: 172-176 Published: 2016

17. Robust predictive dual-loop control method based on Lyapunov function stability and energy equilibrium through double-core processors for active power filter
 By: Xue, Yufei; Chen, Yandong; Luo, An; et al.
 INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS Volume: 89 Pages: 69-81 Published: JUL 2017