Anticancer activity of grassy Hystrix brachyura bezoar and its mechanisms of action: An in vitro and in vivo based study

Abstract

Percupine bezoar (PB) is a calcium undigested material generally found in porcupine's (Hystrice brachyura) gastrointestinal tract. The bezoar is traditionally used in South East Asia and Europe for the treatment of cancer. This paper presents the first report on in vitro A375 cell viability assay, apoptosis assay, cell cycle arrest assay, migration assay, invasion assay, qPCR experimental assay and in vivo anti-angiogenesis assay using the grassy PB. Experimental findings revealed IC50 value are 26.59 +/- 1.37 mu g/mL and 30.12 +/- 3.25 mu g/mL for PB-A and PB-B respectively. PBs showed anti-proliferative activity with no significant cytotoxic effect on normal human dermal fibroblast (NHDF). PBs were also found to induce apoptosis via intrinsic pathway and arrest cell cycle at G2/M phase. Additionally, the findings indicated its ability to destabilize migration and invasion of A375 cells. Further evaluation using embryonic zebrafish model revealed LC50 = 450.0 +/- 250.0 mu g/mL and 58.7 +/- 5.0 mu g/mL for PB-A and PB-B which also exerted anti-angiogenic effect in zebrafish. Moreover, stearic acid, uronosylcholic acid and pregnenolone were identified as possible metabolites that might contribute to the anticancer effect of the both PBs. Overall, this study demonstrated that PB-A and PB-B possess potential in vitro and in vivo anticancer effects which are elicited through selective cytotoxic effect, induction of apoptosis, inhibition of migration and invasion and anti-angiogenesis. This study provides scientific evidence that the percupine bezoar does possess anti-cancer efficacy and further justifies its traditional utility. However, more experiments with higher vertebrate models are still warranted to validate its traditional claims as an anticancer agent.

Keywords

Percupine bezoar, Apoptosis, Cell cycle arrest, Anti-angiogenesis, Anti-metastasis

Key Words Plus: STEARIC ACID, INDUCE APOPTOSIS, PALMITIC ACID, CELL-CYCLE, CANCER; MELANOMA; ANTIDOTE; TARGETS; STONES; ESTER

Author Information

Reprint Address: Wahab, RA (reprint author)

Addresses:

[1] Int Islamic Univ Malaysia, Kulliyah Allied Hlth Sci, Dept Biomed Sc, Kuantan 25200, Pahang, Malaysia
[3] Int Islamic Univ Malaysia, Kulliyah Pharm, Dept Pharmaceut Chem, Kuantan 25200, Pahang, Malaysia
[4] Univ Malaysia Pahang, Fac Elect & Elec Engrg, Kepak 26600, Pahang, Malaysia
[5] InnofTech, 42-12, 7th St, Chennai 600072, Tamil Nadu, India

E-mail Addresses: ridhwan@ium.edu.my

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Higher Education (MOHE), Malaysia</td>
<td>FRGS 13-055-0286</td>
</tr>
<tr>
<td>University Malaysia Pahang</td>
<td>FRGS 16-045-0544</td>
</tr>
</tbody>
</table>

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE

Journal Information

Impact Factor: Journal Citation Reports
1. Molecular targets of dietary agents for prevention and therapy of cancer
 By: Aggarwal, BB, Shishodia, S
 BIOCHEMICAL PHARMACOLOGY Volume: 71 Issue: 10 Pages: 1397-1421 Published: MAY 2006
 Times Cited: 1,163

2. THE BEZARD STONE: A PRINCELY ANTIDOTE, THE TAVORA SEQUEIRA PINTO COLLECTION - OPORTO
 By: Barroso, Maria De Seameiro
 ACTA MEDICO-HISTORICA ADRIATICA Volume: 12 Issue: 1 Pages: 77-98 Published: JUN 2014
 Times Cited: 10

3. Bezoar stones, magic, science and art
 By: Barroso, Maria De Seameiro
 Times Cited: 10

4. Cardinal Palazzo Paluzzi degli Albertoni Altieri and his collection in the Palazzo Altieri: the evidence of the 1698 death inventory, Part ii
 By: Beaven, Lisa, Lloyd, Karen J.
 JOURNAL OF THE HISTORY OF COLLECTIONS Volume: 31 Issue: 1 Pages: 1-16 Published: MAR 2013
 Times Cited: 1

5. A Cancer Cell Spheroid Assay to Assess Invasion in a 3D Setting
 JOURNAL OF VISUALIZED EXPERIMENTS Issue: 105 Article Number: e59409 Published: NOV 2015
 Times Cited: 26

6. Natural sources as potential anti-cancer agents: A review
 By: Bhanot, A.; Sharma, R.; Neelvi, M.N.
 Inter. J. Phytotherapy Volume: 3 Pages: 9-26 Published: 2011
 Times Cited: 111

7. Treatment of Metastatic Melanoma: An Overview
 By: Bhattach, Shailender, Tkach, Scott S.; Thompson, John A.
 ONCOLOGY New York Volume: 23 Issue: 6 Pages: 488-496 Published: MAY 2008
 Times Cited: 307

8. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing
 By: Busquet, Frances, Stredter, Ruben, Rawlings, Jane M., et al.
 REGULATORY TOXICOLOGY AND PHARMACOLOGY Volume: 69 Issue: 3 Pages: 496-511 Published: AUG 2014
 Times Cited: 82

9. Molecular targeted therapies in metastatic melanoma
 By: Chakraborty, Ritika, Wieland, Carlynn N., Comfere, Nneka I.
 PHARMACOGENOMICS & PERSONALIZED MEDICINE Volume: 6 Pages: 49-56 Published: 2013
 Times Cited: 25

10. Anti-metastatic effects of isodiolinonolideone via the inhibition of MMP-2 and up regulation of NM23-H1 expression in human lung cancer A549 cells
 ONCOLOGY LETTERS Volume: 15 Issue: 4 Pages: 4690-4696 Published: APR 2018
 Times Cited: 5

11. Title:[not available]
 By: Collier, J.; Fruhney, M.; Wilson, K.
 Cosmetic Composition and Methods of Use Theme of Volume: 15 Issue: 3 Pages: 411 Published: 2018
 Times Cited: 1

 By: Duffin, Christopher J.
 Pharmaceutical historian Volume: 43 Issue: 1 Pages: 13-22 Published: 2013-Mar
 Times Cited: 11

 JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY Volume: 183 Pages: 125-136 Published: OCT 2018
 Times Cited: 2

14. Proliferation, cell cycle and apoptosis in cancer
 By: Evan, GI, Vyas, KD
 NATURE Volume: 411 Issue: 6835 Pages: 342-348 Published: MAY 17 2001
 Times Cited: 2,155