Corneo-pterigium total area measurements utilising image analysis method

[Mediciones del área total de pterigium corneal utilizando un método de análisis de imagen]

Mohd Radzi, H. a, b, Khairidzan, M.K. b, Mohd Zulfaezal, C.A. b, Azrin, E.A. c

Department of Optometry and Vision Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
Department of Ophthalmology, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
Faculty of Optometry and Vision Science, SEGi University, Petaling Jaya, Selangor, Malaysia

Abstract

Purpose: To describe an objective method to accurately quantify corneo-pterigium total area (CPTA) by utilising image analysis method and to evaluate its association with corneal astigmatism (CA). Methods: 120 primary pterygium participants were selected from patients who visited an ophthalmology clinic. We adopted image analysis software in calculating the size of invading pterygium to the cornea. The marking of the calculated area was done manually, and the total area size was measured in pixel. The computed area is defined as the area from the apex of pterygium to the limbal-corneal border. Then, from the pixel, it was transformed into a percentage (%), which represents the CPTA relative to the entire corneal surface area. Intra- and inter-observer reliability testing were performed by repeating the tracing process twice with a different sequence of images at least one (1) month apart. Intraclass correlation (ICC) and scatter plot were used to describe the reliability of measurement. Results: The overall mean (N = 120) of CPTA was 45.26 ± 13.51% (CI: 42.38–48.36). Reliability for region of interest (ROI) demarcation of CPTA were excellent with intra and inter-agreement of 0.995 (95% CI, 0.994–0.998; P < 0.001) and 0.994 (95% CI, 0.992–0.997; P < 0.001) respectively. The new method was positively associated with corneal astigmatism (P < 0.01). This method was able to predict 37% of the variance in CA compared to 21% using standard method. Conclusions: Image analysis method is useful, reliable and practical in the clinical setting to objectively quantify actual pterygium size, shapes and its effects on the anterior corneal curvature. © 2019

SciVal Topic Prominence

Topic: Pterygium | Eye | Pterygium recurrence

Prominence percentile: 86.710

Author keywords

Corneal Astigmatism, Corneo-pterigium, Image analysis, Pterygium, Total area

Funding details
This research is financially supported by Ministry of Higher Education (MOHE) Malaysia under Prototype Research Grant Scheme (PRGS) with identification number PRGS18-003-0043 and International Islamic University Malaysia (IIUM) under Publication Research Initiative Grant Scheme (P-RIGS) with identification number P-RIGS18-035-0035.

References (28)

1. Lin, A., Stern, G.
 Correlation between pterygium size and induced corneal astigmatism
 doi: 10.1097/00003226-199801000-00005
 View at Publisher

2. Tomidokoro, A., Miyata, K., Sakaguchi, Y., Samejima, T., Tokunaga, T., Oshika, T.
 Effects of pterygium on corneal spherical power and astigmatism
 doi: 10.1016/S0161-6420(00)00219-0
 View at Publisher

 Analysis of pterygium size and induced corneal astigmatism
 doi: 10.1097/ICO.0b013e3181656448
 View at Publisher

4. Öner, V., Taş, M., Özkaya, E., Bulut, A.
 Influence of Pterygium on Corneal Biomechanical Properties
 doi: 10.3109/02713683.2015.1080281
 View at Publisher
<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publication Details</th>
<th>Cited Times</th>
<th>View at Publisher</th>
</tr>
</thead>
</table>
Quantitative analysis of regular and irregular astigmatism induced by pterygium

http://journals.lww.com/corneajrnl/pages/default.aspx
doi: 10.1097/00003226-199907000-00004
View at Publisher

Key factors in the subjective and objective assessment of conjunctival erythema

View at Publisher

The use of fractal analysis and photometry to estimate the accuracy of bulbar redness grading scales
(Open Access)

http://www.iovs.org/cgi/reprint/49/4/1398
doi: 10.1167/iovs.07-1306
View at Publisher

Objective grading of the anterior eye

doi: 10.1097/OPX.0b013e3181981976
View at Publisher

GLCM texture analysis on different color space for pterygium grading

Corneal curvature measurements utilizing a new swept-source optical coherence tomography Tomey OA-2000® and comparison with IOL Master® 500 in pterygium patients

Measurement of contrast sensitivity using the M&S Smart System II compared with the Standard Pelli–Robson Chart in patients with primary pterygium

The development of validated bulbar redness grading scales

doi: 10.1097/OPX.0b013e318157ac9e
View at Publisher
Risk factors for recurrence after pterygium surgery: An image analysis study
http://journals.lww.com/corneajrnl/pages/default.aspx
doi: 10.1097/ICO.0000000000000853
View at Publisher

Ki, T.N., Eom, Y.S., Rhim, J.W.
The prediction of changes in mean corneal refractive power by pterygium size after pterygium surgery

Tan, D.T.H., Chee, S.-P., Dear, K.B.G., Lim, A.S.M.
Effect of pterygium morphology on pterygium recurrence in a controlled trial comparing conjunctival autografting with bare sclera excision
View at Publisher

George, D., Mallery, M.
SPSS for Windows Step by Step, A Simple Guide and References
Pearson Boston 95.105

Prediction of Changes in Visual Acuity and Contrast Sensitivity Function by Tissue Redness after Pterygium Surgery
doi: 10.1080/02713683.2016.1250277
View at Publisher

Quantification of astigmatism induced by pterygium using automated image analysis
http://journals.lww.com/corneajrnl/pages/default.aspx
doi: 10.1097/ICO.0000000000000728
View at Publisher

Che Azemin, M.Z., Gaffur, N.A., Hilmi, M.R., Mohd Tamrin, M.I., Kamal, K.M.
Benchmarked pterygium images for human and machine graders
doi: 10.3923/jeasci.2016.2378.2382
View at Publisher