Heuristic Real-Time Detection of Temporal Gait Events for Lower Limb Amputees

By: Maqbool, HF (Maqbool, Hafiz Farhan)[1,2,1]; Bin Husman, MA (Bin Husman, Muhammad Afif)[2,3]; Awad, MI (Awad, Mohammed Ibrahim)[1,4]; Abouhossein, A (Abouhossein, Alireza)[2,5]; Iqbal, N (Iqbal, Nadeem)[2,6]; Tahir, M (Tahir, Mehak)[7]; Dehghani-Sanjii, AA (Dehghani-Sanjii, Abbas Ali)[2,1]

IEEE SENSORS JOURNAL
Volume: 19 Issue: 8 Pages: 3138-3148
DOI: 10.1109/SEN.2018.2889970
Published: APR 15 2019
Document Type: Article

Abstract
This paper presents a complete system and algorithm to estimate temporal gait events during stance and inner stance phases using a single inertial measurement unit (IMU) in real-time. Validation of the proposed system was carried out by placing the foot switches (FSW) directly underneath the foot. The performance of the system was assessed with eleven control subjects (CS), one unilateral transfemoral amputee (TFA), and one unilateral tibial amputee (TEA), while performing level ground walk and ramp activities. The experimental results showed a reasonable agreement in timing differences of all the gait events in both groups when compared against the reference system. However, high data latency was observed for TFA in the case of Flat Start (FFS) and Heel Off (HO). The slight variation in the positioning of IMU on the shank and the foot switches underneath the foot and the difference in the kinematics of CS and lower limb amputees are probable reasons for large variations in the time difference. Overall, the detection accuracy was found to be 100% for Initial Contact, FFS, and Toe Off, and 98.3% for HO. In addition, a high correlation was observed between estimated stance phase duration (SPD) from IMU and the SPD from FSW data. The proposed system showed high accuracy in the detection of temporal gait events which could potentially be employed in the gait analysis applications and the finite state control of lower limb prostheses/orthoses.

Keywords:
Gait events; lower limb amputees; gyroscope; accelerometer; real-time

Author Information
Reprint Address: Maqbool, HF (reprint author)

Addresses:
[1] Univ Engn & Technol Lahore, Dept Mechatron & Control Engn, Lahore 54000, Pakistan
[3] Int Islamic Univ Malaysia, Dept Mechatron Engn, Selangor 53100, Malaysia
[4] Ain Shams Univ, Mechatron Engn Dept, Cairo 11331, Egypt
[6] Abdul Wali Khan Univ Mardan, Dept Comp Sci, Mardan 23200, Pakistan

E-mail Addresses: farhan.maqbool@uet.edu.pk; AFHusman@ium.edu.my; mohammed.awad@eng.asu.edu; abouhossein@bmu.ac.ir; nikhan@awkum.edu.pk; dr.mehak.farhan@gmail.com; a.a.dehghani-sanji@leeds.ac.uk

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s University, UET Lahore, Pakistan</td>
<td>EP/K020463/1</td>
</tr>
</tbody>
</table>

Citation Network
In Web of Science Core Collection

0

Use in Web of Science
Web of Science Usage Count

0

This record is from:
Web of Science Core Collection
Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.
1. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes
 By: Arminian, K; Najafi, B; Bula, C; et al.
 JOURNAL OF BIOMECHANICS Volume: 35 Issue: 5 Pages: 683-699 Article Number: PII S0021-9290(02)00008-8 Published: MAY 2002

2. A Novel Adaptive, Real-Time Algorithm to Detect Gait Events From Wearable Sensors
 By: Bejarano, Noelia Chia; Ambrosini, Emilia; Pedrocchi, Alessandra; et al.
 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Volume: 23 Issue: 3 Pages: 413-422 Published: MAY 2015

3. Development and validation of an accelerometer-based method for quantifying gait events
 By: Boutayamou, Mohamed; Schwartz, Cedric; Stamatakis, Julien; et al.
 MEDICAL ENGINEERING AND PHYSICS Volume: 37 Issue: 2 Pages: 226-232 Published: FEB 2015

4. Gait analysis in the amputee: has it helped the amputee or contributed to the development of improved prosthetic components?
 Times Cited: 30
 By: Czerniecki, JM; Gitter, AJ.
 Gait Posture Volume: 4 Pages: 258-268 Published: 1995

5. Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait
 Times Cited: 39
 By: Desailliy, Eric; Daniel, Yepremian; Sardain, Philippe; et al.
 GAIT & POSTURE Volume: 23 Issue: 1 Pages: 76-80 Published: JAN 2003

6. Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis
 Times Cited: 43
 By: Garsic, Maj; Kamnik, Roman; Ambrozić, Luka; et al.
 SENSORS Volume: 14 Issue: 2 Pages: 2776-2794 Published: FEB 2014

7. A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits
 Times Cited: 25
 By: Gouwanda, Darwin; Gopalai, Alpha Agape
 MEDICAL ENGINEERING & PHYSICS Volume: 37 Issue: 2 Pages: 219-225 Published: FEB 2015

8. An adaptive gyroscope-based algorithm for temporal gait analysis
 Times Cited: 69
 By: Greene, Barry R; McGrath, Denise; O’Neill, Ross; et al.
 MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING Volume: 48 Issue: 12 Pages: 1251-1260 Published: DEC 2010
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Conference</th>
<th>Times Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Lower Limb Gait Activity Recognition Using Inertial Measurement Units for rehabilitation robotics</td>
<td>By: Hamdi, Mohammed M.; Awad, Mohammed I.; Abdelhameed, Magdy M.; et al.</td>
<td>PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR) Pages: 316-322 Published: 2015</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Real-time gait event detection using wearable sensors</td>
<td>By: Hanlon, Michael; Anderson, Ross</td>
<td>GAIT & POSTURE Volume: 30 Issue: 4 Pages: 523-527 Published: NOV 2009</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals</td>
<td>By: Jasiewicz, Jan M.; Allum, John H. J.; Middleton, James W.; et al.</td>
<td>GAIT & POSTURE Volume: 24 Issue: 4 Pages: 502-509 Published: DEC 2006</td>
<td>157</td>
</tr>
<tr>
<td>12</td>
<td>Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model</td>
<td>By: Lambrecht, Stefan; Harutyunyan, Anna; Tanghe, Kevin; et al.</td>
<td>SENSORS Volume: 17 Issue: 4 Article Number: 671 Published: APR 2017</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Quasi real-time gait event detection using shank-attached gyroscopes</td>
<td>By: Lee, Jung Keun; Park, Edward J.</td>
<td>MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING Volume: 49 Issue: 6 Pages: 707-712 Published: JUN 2011</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>Walking speed estimation using a shank-mounted inertial measurement unit</td>
<td>By: Li, Q.; Young, M.; Naing, V.; et al.</td>
<td>JOURNAL OF BIOMECHANICS Volume: 43 Issue: 8 Pages: 1640-1643 Published: MAY 28 2010</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>Online Decoding of Hidden Markov Models for Gait Event Detection Using Foot-Mounted Gyroscopes</td>
<td>By: Mannini, Andrea; Genovesi, Vincenzo; Sabatini, Angelo Maria</td>
<td>IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS Volume: 18 Issue: 4 Pages: 1122-1130 Published: JUL 2014</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>Stance Sub-phases Gait Event Detection in Real-Time for Ramp Ascent and Descent</td>
<td>By: Maqbool, Hafiz F.; Husman, Muhammad A. B.; Awad, Mohammed I.; et al.</td>
<td>CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION II VOLS 1 AND 2 Book Series: Biosystems and Birobotics Volume: 15 Pages: 191-196 Published: 2017</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors</td>
<td>By: Mariani, Benoit; Rouhani, Hassein; Crevalskier, Xavier; et al.</td>
<td>GAIT & POSTURE Volume: 37 Issue: 2 Pages: 229-234 Published: FEB 2013</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>Experimental evaluation of a novel inertial sensor based realtime gait phase detection algorithm</td>
<td>By: Muller, P.; Seel, T.; Schauer, T.</td>
<td>P I N T C LOC GNSS ICL Pages: 1-17 Published: 2015</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees</td>
<td>By: Nolan, L; Wit, A; Dudzinski, K; et al.</td>
<td>GAIT & POSTURE Volume: 17 Issue: 2 Pages: 142-151 Article Number: PII S0966-6362(02)00066-8 Published: APR 2003</td>
<td>143</td>
</tr>
<tr>
<td>22</td>
<td>A reliable gait phase detection system</td>
<td>By: Pappas, IP; Popovic, MR; Keller, T.; et al.</td>
<td>IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Volume: 9 Issue: 2 Pages: 113-125 Published: JUN 2001</td>
<td>225</td>
</tr>
</tbody>
</table>
23. **Dynamic regulation of sensorimotor integration in human postural control**
 By: Peterka, RJ; Loughlin, PJ
 JOURNAL OF NEUROPHYSIOLOGY Volume: 91 Issue: 1 Pages: 410-423 Published: JAN 2004
 Times Cited: 279

24. **Methods for gait event detection and analysis in ambulatory systems**
 By: Rueterbories, Jan; Spaich, Erika G; Larsen, Birgit; et al.
 MEDICAL ENGINEERING & PHYSICS Volume: 32 Issue: 6 Pages: 545-552 Published: JUL 2010
 Times Cited: 141

25. **Assessment of walking features from foot inertial sensing**
 By: Sabatini, AM; Martelloni, C; Scapellato, S; et al.
 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Volume: 52 Issue: 3 Pages: 486-494 Published: MAR 2005
 Times Cited: 303

26. **Gait assessment in Parkinson's disease: Toward an ambulatory system for long-term monitoring**
 By: Salarian, A; Russmann, H; Vingerhoets, FJG; et al.
 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Volume: 51 Issue: 8 Pages: 1434-1443 Published: AUG 2004
 Times Cited: 260

27. **Reliability of the step phase detection using inertial measurement units: pilot study**
 By: Sessa, Salvatore; Zecca, Massimiliano; Bartolomeo, Luca; et al.
 HEALTHCARE TECHNOLOGY LETTERS Volume: 2 Issue: 2 Pages: 58-63 Published: APR 2015
 Times Cited: 3

28. **Virtual artificial sensor technique for functional electrical stimulation**
 By: Tong, KY; Granat, MH
 MEDICAL ENGINEERING & PHYSICS Volume: 20 Issue: 6 Pages: 458-468 Published: SEP 1998
 Times Cited: 21

29. **AUTOMATIC STANCE-SWING PHASE DETECTION FROM ACCELEROMETER DATA FOR PERONEAL NERVE-STIMULATION**
 By: WILLEMSEN, ATM, BLOEMHOF, F; BOOM, HBK
 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Volume: 37 Issue: 12 Pages: 1201-1208 Published: DEC 1990
 Times Cited: 97

30. **A review of body segmental displacement, velocity and acceleration in human gait**
 By: Wu, G.
 Gait Analysis Pages: 205-222 Published: 1995
 Times Cited: 12

Showing 30 of 30 View All in Cited References page