Designing learning-skills towards industry 4.0

Umachandran, K.a, Della Corte, V.b, Amuthalakshmi, P.c, Ferdinand-James, D.d, Tolba Said, M.M.e, Sawicka, B.f, Del Gaudio, G.f, Mohan, T.R.g, Refugio, C.N.h, Aravind, V.R.i, Jurcic, I.k

aNELCAST Ltd, 159 TTK Road, Chennai, 600018, India
bDepartment of Economics, Management Institution, Federico II University of Naples, Naples, Italy
cMadras School of Social Work, Chennai, 600 008, India

Abstract

The world is shrinking now more than ever due to new scientific and technological breakthroughs that expand the boundaries of human knowledge, resulting in improvements in transportation, communication, space exploration and educational technologies. Today’s students will compete in a technological, diverse, multi-cultural world and must be prepared to thrive in this futuristic environment. Therefore, it is vital that today’s pedagogy produce lifelong learners, who can succeed in a global pulpit. To ensure our educational technology progresses at the rate demanded by today’s ubiquitous digital learners, we review emerging technologies and traditional teaching methods and propose desirable changes. Future companies will need employees with specific Internet of Things connected additive manufacturing skills across the value stream, including computer-aided design, machine operation, raw material development, robotics and supply chain management; but these are only island of excellence in industry 4.0 and not the consummate requirement of the manufacturing process. © 2019, Sciencepark Research Organization and Counseling. All rights reserved.

Author keywords

Future skills, Industry 4.0, IoT, Smart teaching

ISSN: 13091506
Source Type: Journal
Original language: English

Cited by 0 documents

Discover related documents based on references

Related documents

A computer-based tutor for learning energy and power

Dissecting assessment: A paradigm shift towards technology-enhanced assessments

Impact of gender and cooperative membership on farmers’ use of information communication technologies in Abuja, Nigeria

View more related documents based on references

References (31)

Aesaert, K., Van Nijlen, D., Vanderlinde, R., Tondeur, J., Devlieger, I., Van Braak, J.
The contribution of pupil, classroom and school level characteristics to primary school pupils’ ICT competences: A performance-based approach
http://www.journals.elsevier.com/computers-and-education/
doi: 10.1016/j.compedu.2015.03.014

View at Publisher
Data Fusion and IoT for Smart Ubiquitous Environments: A Survey (Open Access)

doi: 10.1109/ACCESS.2017.2697839

View at Publisher

Workshop: Hands-on introduction to creating intelligent tutoring systems without programming using the cognitive tutor authoring tools (CTAT)

Bhattacharya, A.
(2017) Sin Some Lose Some

Bowen, J.A., Watson, C.E.
San Francisco, CA: Jossey-Bass

Cavus, N., Alhih, M.S.
Learning management systems use in science education

Chamberlin, L., Lehmann, K.
Twitter in higher education

View at Publisher

D’Ortenzio, C.
Australia: University of Canberra

Ferdinand-James
Asynchronous debates—contribution to chapter 10
J. A. Bowen & E. C. Watson (Eds.), San Francisco, CA

Ferdinand-James, D., Umachandran, K.
Online assessment: Product development in academic writing
11 Gay, G.
Preparation for culturally responsive teaching
http://www.sagepub.com/journalsProdDesc.nav?prodId=journal200961
doi: 10.1177/0022487102053002003
View at Publisher

12 Geisinger, B.N., Raman, D.R.
Why they leave: Understanding student attrition from engineering majors

13 Greenhow, C.
Online social networks and learning
doi: 10.1108/10748121111107663
View at Publisher

14 Hafkin, N.J., Huyer, S.
Women and gender in ICT statistics and indicators for development

15 Kitchenham, A.
Blended learning across disciplines: Models for implementation
http://www.igi-global.com/book/blended-learning-across-disciplines/47398
ISBN: 978-1-60960-479-0
doi: 10.4018/978-1-60960-479-0
View at Publisher

16 Hong, C.-M., Chen, C.-M., Chang, M.-H., Chen, S.-C.
Intelligent web-based tutoring system with personalized learning path guidance
doi: 10.1109/ICALT.2007.167
View at Publisher

17 Hrastinski, S.
Asynchronous and synchronous E-learning

18 Khan, B.
The global e-Learning framework
http://technologysource.org/article/336/
ISBN: 978-143980458-2; 978-143980457-5
doi: 10.1201/b10274
View at Publisher

doi: 10.1016/j.im.2009.08.003
View at Publisher

Affordances of data science in agriculture, manufacturing, and education

View at Publisher

Umachandran, K.; NELCAST Ltd, 159 TTK Road, Chennai, India; email:umachandran_k@hotmail.com
© Copyright 2019 Elsevier B.V., All rights reserved.