A comparison between destructive and non-destructive techniques in determining coating thickness

By: Haider, FI [Haider, F. J.] [1]; Suryanto [Suryanto] [1]; Ani, MH [Ani, M. H.] [1]; Mahmood, MH [Mahmood, M. H.] [1]

INTERNATIONAL CONFERENCE ON ADVANCES IN MANUFACTURING AND MATERIALS ENGINEERING (ICAMME 2017)
Book Group Author(s): IOP
Book Series: IOP Conference Series-Materials Science and Engineering
Volume: 290
Article Number: UNSP 012020
DOI: 10.1088/1757-899X/290/1/012020
Published: 2018

Conference
Conference: International Conference on Advances in Manufacturing and Materials Engineering (ICAMME)
Location: Int Islam Univ, Kuala Lumpur, MALAYSIA
Date: AUG 08-09, 2017

Abstract
Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40 mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 120 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100 mins time interval, where the values of the thickness measured by cross sectional and weight gain were 16.33 μm and 18.19 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

Author Information
Reprint Address: Suryanto (reprint author)
Address: [1] IIUM, Dept Mfg & Mat Eng, Jalan Gombak, Kuala Lumpur 53100, Malaysia
E-mail Addresses: surya@iium.edu.my

Publisher
IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Categories / Classification
Research Areas: Engineering; Materials Science
Web of Science Categories: Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary

Document Information
Language: English
Accession Number: WOS:000307434000020
ISSN: 1757-8981
Cited References: 9

<table>
<thead>
<tr>
<th>Title</th>
<th>Times Cited</th>
</tr>
</thead>
</table>
| 1. Title: [not available]
By: Beamish, D.
Metal Finishing Volume: 97 Pages: 548-550 Published: 1999 | 1 |
| 2. Non-Destructive Techniques Based on Eddy Current Testing
By: Garcia-Martin, Javier; Gomez Gil, Jaime; Vazquez Sanchez, Ernesto
SENSORS Volume: 11 Issue: 3 Pages: 2525-2565 Published: MAR 2011 | 216 |
| 3. Title: [not available]
Patent Number: 8,969,833
Inventor/Assignee: Gongora, G J; Vail, M A
U. S. Patent Published: 2015
Washington, DC: U. S. Patent. | 1 |
| 4. Title: [not available]
By: Haider, F; Ani, M; Mahmood, M; et al.
Materials Science and Engineering Volume: 204 Pages: 12-17 Published: 2017
[Show additional data] | 1 |
| 5. Evaluation of the Effects of Copper Electroplating Parameters on the Adhesion Using Response Surface Methodology
By: Haider, F.I.; Suryanto; Ani, M.H.; et al.
Applied Mechanics and Materials Volume: 646 Pages: 121-16 Published: 2017 | 1 |
| 6. X-ray fluorescence spectrometry in art and archaeology
By: Mantler, M; Schreiner, M
X-RAY SPECTROMETRY Volume: 29 Issue: 1 Pages: 3-17 Published: JAN-FEB 2000 | 170 |
| 7. Title: [not available]
By: Petrilli, C.
Metal Finishing Volume: 99 Pages: 810-813 Published: 2001 | 1 |
| 8. Validation of Terahertz Coating Thickness Measurements Using X-ray Microtomography
By: Russe, Isabelle-Sophie; Brock, Daniela; Knop, Klaus; et al.
MOLECULAR PHARMACEUTICS Volume: 9 Issue: 12 Pages: 3551-3559 Published: DEC 2012 | 31 |
| 9. Research on strategies to improve measurement of coating thickness in hemispherical steel shells for an inclined eddy current sensor
By: Zhang, Dongli; Wu, Meixian; Li, Hongmei; et al.
INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS Volume: 52 Issue: 3-4 Pages: 1409-1415 Published: 2016 | 1 |