Material Characterization of a Doped Triangular Silicon Nanowire Using Raman Spectroscopy

By: Za’bah, NF (Za’bah, Nor F.)¹; Ra’ilib, AAM (Ra’ilib, Aliza Aini Md)¹; Kwa, KSK (Kwa, Kelvin S. K.)²; O’Neill, A (O’Neill, Anthony)²

ADVANCED SCIENCE LETTERS
Volume: 24 Issue: 11 Pages: 8362-8365
DOI: 10.1166/asl.2018.12384
Published: NOV 2018
Document Type: Proceedings Paper

Abstract
A top-down silicon nanowire fabrication using a combination of optical lithography and orientation dependent etching (ODE) has been developed using a doped Silicon-on-Insulator (SOI) as the starting substrate. The use of ODE etchant such as potassium hydroxide (KOH) and Tetra-Methyl Ammonium Hydroxide (TMAH) is known to create geometrical structures due to its anisotropic mechanism of etching. The SOI is doped with an n-type dopant (phosphorus) and the doped silicon nanowire is then characterized using Raman Spectroscopy. Due to the changes in the silicon structure, the result shows that the highly doped silicon nanowire has a wider Full Width Half Maximum (FWHM) as compared to the undoped silicon substrate.

Keywords
Silicon Nanowire, Raman Spectroscopy, FWHM

Author Information
Reprint Address: Za’bah, NF (reprint author)

Address(es):
¹Int Islamic Univ Malaysia, Kulliyyah Engn, Dept Elect & Comp Engn, POB 10, Kuala Lumpur 50728, Malaysia
²Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Islamic University Malaysia</td>
<td></td>
</tr>
<tr>
<td>Ministry of Higher Education, Malaysia</td>
<td>RIGS 16-083-0247</td>
</tr>
</tbody>
</table>

Publisher
AMER SCIENTIFIC PUBLISHERS, 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA

Categories / Classification
Science & Technology - Other Topics
Multidisciplinary Sciences
Cited References: 6

Showing 6 of 6 View All in Cited References page

| 1. | Title: [not available]
| | By: Alexander, F. G.
| | Article Number: 617528
| | Published: 2012
| | Times Cited: 1 |

| 2. | Ion beam doping of silicon nanowires
| | By: Colli, Alan; Fasoli, Andrea, Ronning, Carsten; et al.
| | NANO LETTERS Volume: 8
| | Issue: 8
| | Pages: 2188-2193
| | Published: AUG 2008
| | Times Cited: 75 |

| 3. | Kinetics of solid phase crystallization of amorphous silicon analyzed by Raman spectroscopy
| | By: Hong, Won-Eui; Ro, Jae-Sang
| | JOURNAL OF APPLIED PHYSICS Volume: 114
| | Issue: 7
| | Article Number: 073511
| | Published: AUG 21 2013
| | Times Cited: 11 |

| 4. | Doping effects on the Raman spectra of silicon nanowires
| | By: Meng, Chao-Yu; Chen, Jui-Lin; Lee, Si-Chen; et al.
| | PHYSICAL REVIEW B Volume: 73
| | Issue: 24
| | Article Number: 245309
| | Published: JUN 2006
| | Times Cited: 11 |

| 5. | Application of UV-Raman Spectroscopy for characterization of the physical crystal structure following flash anneal of an ultrashallow implanted layer
| | By: Yoshimoto, M; Nishigaki, H; Harima, H; et al.
| | JOURNAL OF THE ELECTROCHEMICAL SOCIETY Volume: 153
| | Issue: 7
| | Pages: G697-G702
| | Published: 2006
| | Times Cited: 17 |

| 6. | Top-down fabrication of single crystal silicon nanowire using optical lithography
| | By: Za’bah, Nor F.; Kwa, Kelvin S. K.; Bowen, Leon; et al.
| | JOURNAL OF APPLIED PHYSICS Volume: 112
| | Issue: 2
| | Article Number: 024309
| | Published: JUL 15 2012
| | Times Cited: 7 |

Showing 6 of 6 View All in Cited References page