Reliability Study of Silicon Carbide Schottky Diode with Fast Electron Irradiation

Khairi, M.A. A, Rahim, R.A. A, Saidin, N. A, Hasbullah, N.F. B, Abdullah, Y. A

Abstract

The impact of fast electron exposure upon the performance of commercial silicon carbide Schottky diodes has been studied. Under 3 MeV electrons, absorbed dose of 10 and 15 MGy at room temperature, the forward current density-voltage characteristic of INFINEON and STMICROELECTRONICS devices have been decreased by 4.6 and 8.2 orders of magnitude respectively. The reduction is associated with the significant rise in the series resistance (INFINEON: 1.45 Ω to 121×10 Ω; STMICROELECTRONICS: 1.44 Ω to 2.1 × 10 Ω) due to the irradiation-induced defects. Besides that, the reverse leakage current density in INFINEON increased by one order of magnitude while reverse leakage current density in STMICROELECTRONICS decreased by about one order of magnitude. We have also observed an increase in ideality factor (INFINEON: 1.01 to 1.05; STMICROELECTRONICS: 1.02 to 1.3) and saturation current (INFINEON: 1.6×10 A to 2.5×10 A; STMICROELECTRONICS: 2.4×10 A to 8×10 A) as a result of electron irradiation. Overall, for particular devices studied, INFINEON have better quality devices and more radiation resistance compared to STMICROELECTRONICS. © 2018 IEEE.
Funding details

<table>
<thead>
<tr>
<th>Funding sponsor</th>
<th>Funding number</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Higher Education, Malaysia</td>
<td>RIGS16-338-0502,FRGS 15-244-0485</td>
<td>MOHE</td>
</tr>
<tr>
<td>Ministry of Higher Education, Malaysia</td>
<td>RIGS16-338-0502,FRGS 15-244-0485</td>
<td>MOHE</td>
</tr>
</tbody>
</table>

Funding text #1
This work was financially supported by Ministry of Education, Malaysia under Research Grant FRGS 15-244-0485 and RIGS16-338-0502.

Funding text #2
We are grateful for the support from the Ministry of Education, Malaysia for financial support under Research Grant FRGS 15-244-0485 and RIGS16-338-0502.

References (18)

ISBN: 978-153866991-4
Source Type: Conference Proceeding
Original language: English
DOI: 10.1109/ICCCE.2018.8539343
Document Type: Conference Paper
Publisher: Institute of Electrical and Electronics Engineers Inc.

1. Fujita, S.
Wide-bandgap semiconductor materials: For their full bloom (Open Access)
doi: 10.7567/JJAP.54.030101
View at Publisher

2. Liu, G., Tuttle, B.R., Dhar, S.
Silicon carbide: A unique platform for metal-oxide-semiconductor physics
http://scitation.aip.org/content/aip/journal/apr2/browse
doi: 10.1063/1.4922748
View at Publisher

A survey of wide bandgap power semiconductor devices
doi: 10.1109/TPER.2013.2268900
View at Publisher
4. Nguyen, K.V., Pak, R.O., Oner, C., Zhao, F., Mandal, K.C.
Investigation of 12 μm 4H-SiC epilayers for radiation detection and noise analysis of front-end readout electronics
ISBN: 978-146739862-6
doi: 10.1109/NSSMIC.2015.7582285
View at Publisher

5. Bertuccio, G., Puglisi, D., Torrisi, L., Lanzieri, C.
Silicon carbide detector for laser-generated plasma radiation
doi: 10.1016/j.apsusc.2012.03.183
View at Publisher

SiC Schottky diodes for harsh environment space applications
doi: 10.1109/TIE.2010.2080252
View at Publisher

7. Semenov, A., Cojocari, O., Hübers, H.-W., Song, F., Klushin, A., Müller, A.-S.
Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation
doi: 10.1109/LED.2010.2048192
View at Publisher

8. Nava, F., Bertuccio, G., Cavallini, A., Vittone, E.
Silicon carbide and its use as a radiation detector material
http://www.iop.org/EJ/journal/0957-0233
doi: 10.1088/0957-0233/19/10/102001
View at Publisher

9. Nicholas, T., Sheldon, L.

10. Çınar, K., Coşkun, C., Aydoğan, S., Asil, H., Gür, E.
The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts
View at Publisher

doi: 10.1007/s11664-016-4609-z

View at Publisher

12. The influence of high energy electron irradiation on the schottky barrier height and the richardson constant of Ni/4H-SiC schottky diodes

doi: 10.1016/j.mssp.2015.04.031

View at Publisher

13. Electrical characterization of 4H-SiC Schottky diodes with RuWO₅ Schottky contacts before and after irradiation by fast electrons

doi: 10.1002/pssa.201127559

View at Publisher

14. Radiation damage of SiC Schottky diodes


15. Impact of high energy electron irradiation on high voltage Ni/4H-SiC Schottky diodes

http://scitation.aip.org/content/aip/journal/apl/
doi: 10.1063/1.4977095

View at Publisher

16. Electrical characterization of defects introduced during electron beam deposition of W Schottky contacts on n-type 4H-SiC

doi: 10.1016/j.mssp.2016.04.012

View at Publisher

17. Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons

doi: 10.1063/1.2401658

View at Publisher
Castaldini, A., Cavallini, A., Rigutti, L., Nava, F.

Low temperature annealing of electron irradiation induced defects in 4H-SiC

doi: 10.1063/1.1810627

View at Publisher