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Species identification of sea cucumbers that have undergone body deformation due to
extensive food processing e.g. beche-de-mer is difficult especially with the
copresence of cases of unlabelled or mislabelled sea cucumber-based products in the
markets. Therefore, a study was done to determine the species identities of processed
sea cucumbers from selected Malaysian markets using concatenated gene sequences
of non-protein-coding 12S and 16S mitochondrial rRNA genes. Phylogenetic
analyses based on the distance-based Neighbour Joining method, and the character-
based methods i.e. the Maximum Parsimony method, Maximum Likelihood method,
and the Bayesian Analysis method of 47 ingroup sequences representing 37 processed
sea cucumber specimens, 6 reference samples, and 4 additional specimens suggested
the presence of 3 main clusters i.e. gamat family consisting of genus Stichopus and
genus Thelenota; and timun laut family comprising family Holothuriidae. A number
of 3 gamat species i.e. Stichopus horrens, Stichopus vastus, and Thelenota anax were
recorded. Meanwhile, the specimens of Holothuria (Halodeima) atra, Holothuria
(Halodeima) edulis, Holothuria (Metriatyla) lessoni, Holothuria (Mertensiothuria)
leucospilota, and Holothuria (Metriatyla) scabra were the 5 timun laut species that
grouped under the family Holothuriidae. The outcomes of this study can be utilised
by the enforcement agencies to monitor and overcome the issues of species
substitution and product mislabelling of processed sea cucumber products in
Malaysian markets.
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1. Introduction

The seafood industry is facing a critical
issue of species substitution of commercial
marine products. There are a number of
contributing factors to such issue or intentional
product mislabelling; among them are increase
in global seafood consumption, growing
international trade, and fluctuations in the food
supply and demand of different marine species
(Rasmussen & Morrissey, 2008). According to
Rasmussen and Morrissey (2008), economic
fraud, health hazards, and illegal trade of
protected species could be the serious
consequences  resulted  from  species
substitution. China have commercialised 26
sea cucumber species placing the country as
the second world’s top producer (Choo, 2008).
However, the mislabelling of 63.6 percent of
commercial sea cucumber products from
Guangzhou, China was reported by Wen et al.
(2011). The same issue can be observed in
Malaysian markets by which some sea
cucumber-based products have been labelled
with incorrect species name and missing
manufacturing or packaging details. In fact,
Malaysia has been ranked as the fourth
world’s top producer of commercial sea
cucumber with 19 commercial species (Choo,
2008) and the issue could cause problems to
the local economy, health and conservation
sectors.

For years, the microscopic observation of
ossicle shapes; the external anatomy of sea
cucumber e.g. the presence and shape of tube
feet and feeding tentacles; and the internal
anatomy e.g. the types of calcareous rings
have been used for morphological species
identification of sea cucumber. However, even
though the morphological characteristics in sea
cucumber species identification are important
(Dabbagh et al., 2012; Massin et al., 2002),
molecular method wusing Deoxyribonucleic
Acid (DNA) is required as a confirmation tool
especially for processed sea cucumbers that
have underwent shape deformation due to
extensive  processing. Processed sea
cucumbers including beche-de-mer are
available in the forms of frozen, dried, pickled,
and canned products, to mention a few.

Species  identification,  phylogenetic
analyses, and phylogeographical analyses of
animal have incorporated mitochondrial DNA
(mtDNA) as the most preferred model for
molecular genetic studies. Small-subunit
mitochondrial ribosomal RNA (rRNA) as part
of the mtDNA stores informative resources for
phylogenies (Freeman & Herron, 2004). 12S
rRNA and 16S rRNA are the 2 components of
the small subunit. Both mitochondrial rRNA
genes are not protein-coding gene, since rRNA
only produces polypeptides that are used to
make up proteins. In fact, 16S mitochondrial
rRNA gene has been frequently used in the
molecular genetic analyses of sea cucumber.
In terms of species identification of processed
sea cucumbers in commercial food products,
PCR-RFLP technique and Forensically
Informative Nucleotide Sequencing (FINS)
technique based on the 16S mitochondrial
rRNA gene have been further developed by
Wen et al. (2010) to identify six sea cucumber
species of the family Stichopodidae.
Furthermore, Wen et al. (2011) applied FINS
technique to evaluate the incidence of
incorrect labelling of sea cucumbers of the
family Holothuriidae. The studies reported the
presence of product mislabelling issue or
species substitution issue in the markets. In
contrast to 16S mitochondrial rRNA, there is a
lack of study on 12S mitochondrial rRNA
gene of sea cucumber to date. Only one study
on 12S mitochondrial rRNA gene of live sea
cucumber has been found to date (Clouse et al.
2005). Clouse et al. (2005) summarised that B.
marmorata and B. bivittata should be accepted
as 2 separate species as both species were not
sister species and B. bivittata was genetically
closer to B. argus. In terms of species
identification of processed sea cucumbers,
Kamarudin et al. (2017) incorporated ossicle
shapes and 12S rRNA gene sequences for
species identification of gamat-based beche-
de-mer from Langkawi Island, Kedah,
Malaysia. Besides, Kamarudin et al. (2017)
used 12S mitochondrial rRNA gene to identify
the species of sea cucumber specimens from
Kudat, Sabah, Malaysia whereby 3 species
were recorded 1i.e. Holothuria scabra,
Stichopus horrens and Stichopus ocellatus.
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In Malaysia, issues related to species
substitution and product mislabelling of sea
cucumber-based products can be observed and
investigated at some places. Therefore, the aim
of this study was to determine the species
identity of processed sea cucumber specimens
from selected Malaysian markets by using the
concatenated gene sequences of non-protein-
coding 12S mitochondrial rRNA gene and 16S
mitochondrial rRNA gene. Since both
mitochondrial rRNA genes have been known
informative, it is believed that their
concatenation will give better conclusion on
the genetic identity of sea cucumber due to the
interconnection of more informative sites in a
DNA sequence. The genetic identity and
relationship of the sea cucumber specimens in
this study were determined through Online
Basic Local Alignment Search Tool program
for nucleotide (blastn) and phylogenetic
analyses based on the distance-based method
with clustering algorithm as the tree building
strategy 1.e. the Neighbour Joining method,
and the character-based methods with
optimality criterion as the tree building
strategy i.e. the Maximum Parsimony method,
Maximum Likelihood method, and the
Bayesian Analysis method. A comparison has
been made between the findings of the
analyses and the manufacturing or packaging
details of the sea cucumber specimens.
Moreover, this study also highlights the issues

of intentional species substitution and product
labelling of processed sea cucumbers in
selected Malaysian markets. The information
may be utilised by the enforcement agencies to
tackle issues pertaining to sea cucumber-based
products in Malaysia.

2. Materials and methods
2.1 Study site and sampling

Kota Kinabalu, Sabah and Kudat, Sabah (East
Malaysia, in Borneo Island); Kuantan, Pahang
Darul Makmur (East Coast region of
Peninsular Malaysia); Langkawi Archipelago,
Kedah Darul Aman (North region of
Peninsular Malaysia); Nilai, Negeri Sembilan
Darul Khusus (South region of Peninsular
Malaysia); and Pangkor Archipelago, Perak
Darul Ridzuan (West Coast region in the
northern part of Peninsular Malaysia) were
included as the sampling sites (Figure 1). A
number of 112 sea cucumber specimens were
sampled including six live and fresh specimens
of gamat species (SHP1-SHP3, Stichopus
horrens) and timun laut species (HLTNP1-
HLTNP3,  Holothuria  (Mertensiothuria)
leucospilota)) from 2 sampling sites in
Pangkor Archipelago as the reference samples
of fresh sea cucumbers; and 7 dried gamat-
based beche-de-mer specimens from Kuah,
Langkawi Archipelago (LKIG1-LKIGO6) as the
reference samples of processed sea cucumbers.
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INDICATOR: North Region of Peninsular Malaysia
1. Kuah, Langkawi Island, Kedah Darul Aman

West Coast of Peninsular Malaysia
2. Pangkor Island, Perak Darul Ridzuan

South Region of Peninsular Malaysia
3. Nilai, Negeri Sembilan Darul Khusus

East Coast of Peninsular Malaysia
4. Kuantan, Pahang Darul Makmur

Borneo Island (East Malaysia)
5. Kota Kinabalu, Sabah
6. Kudat, Sabah

Figure 1 Sampling sites of sea cucumber specimens. Adapted from Kamarudin (2018).

2.2 Total genomic DNA extraction

A number of 3 methods of total genomic
DNA extraction were used i.e. modified cetyl
trimethyl ammonium bromide (CTAB) method
of Grewe et al. (1993) coupled with the
Geneaid  Genomic DNA  Mini Kit
(Blood/Cultured Cell), total genomic DNA
extraction using the FavorPrep™ Tissue
Genomic DNA Extraction Mini Kit, and total
genomic DNA extraction using the DNeasy
mericon Food Kit by QIAGEN. For the third
method, homogenised tissue was prepared by
using the QIAGEN TissueRuptor for
disrupting and homogenising the tissue. One
% agarose gel with FloroSafe DNA Stain was
used to determine the approximate yield of the
total genomic DNA through horizontal gel
electrophoresis. The extracts were kept in —20
°C chest freezer for long-term storage.

2.3 Polymerase chain reaction (PCR)
The gene amplification involved 2
methods:

a) Twenty five ul PCR reaction volume
using the 2x TopTaq Master Mix Kit by
QIAGEN

b) Fifty ul PCR reaction volume
containing 33.75 ul of sterilised dH,0, 5.0 pl
of 10X PCR reaction buffer, 3.0 ul of 25 mM
magnesium chloride, 2.5 pl of each 5 uM
universal primer, 1.0 ul of 10 mM dNTP mix,
2.0 pl of the DNA extract and 0.25 pl of 5 u/pl
Tag DNA polymerase.

The primer sets for mitochondrial rRNA
genes are as follows:

a) Primers for 12S mitochondrial rRNA
gene (Palumbi et al. (1991), expected length:
~360 bp)):

ABI2SA-Lf (forward) 5’- AAA CTG
GGA TTA GAT ACC CCA CTA T -3° (25
bases)

ABI12SB-Hr (reverse) 5’- GAG GGT
GAC GGG CGG TGT GT -3’ (20 bases)

b) Primers for 16S mitochondrial rRNA
gene (Palumbi et al. (1991), expected length:
~650 bp)):

Maritime Technology and Research 2019; 1(2)
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l6sar-L (forward) 5> — CGC CTG TTT
ATC AAA AAC AT -3’ (20 bases)

16sbr-H (reverse) 5° — CCG GTC TGA
ACT CAG ATC ACG T - 3’ (22 bases)

The PCR cycles involved 2 parameter
batches:

a) 2 min at 95 °C for initial denaturation,
30 s at 95 °C for denaturation, 30 s at
optimised temperature for annealing, 45 s at 72
°C for extension, repetition of step 2 - 4 for
another 34 - 39 cycles, 5 min at 72 °C for final
extension, and forever hold at 4 °C.

b) 5 min at 95 °C for initial denaturation,
45 s at 95 °C for denaturation, 90 s at
optimised temperature for annealing, 1 min 30
s at 72 °C (60 s/kb; 29 cycles) for extension, 7
min at 72 °C for final extension, and forever
hold at 4 °C.

2.4 PCR product purification and DNA
sequencing

The PCR fragment purification involved 3
types of kits i.e. QIAquick PCR Purification
Kit by QIAGEN (for direct purification of
single PCR fragment), Geneaid Gel/PCR DNA
Fragments Extraction Kit (for direct
purification of single PCR fragment), and
QIAquick Gel Extraction Kit by QIAGEN (for
purification of desired PCR fragment from
agarose gel). Some of the unpurified PCR
products were sent directly to the First BASE
Laboratories Sdn Bhd, Seri Kembangan,
Selangor Darul Ehsan, Malaysia as the
company also provides PCR products clean up
service.

2.5 Phylogenetic analyses

The sequenced PCR products of the
mitochondrial DNA genes were displayed
using Chromas program version 2.5.1
(Copyright® 1998 - 2016 Technelysium Pty
Ltd). The online blastn was used to assign
each DNA sequence to a particular sea
cucumber species or genus. Prior to the
phylogenetic tree reconstruction, ClustalX
program version 2.1 (Thompson et al., 1997)
was used for multiple sequence alignment of
forward reaction sequences. In addition,
Molecular Evolutionary Genetics Analysis

version 7.0.14 (MEGA7; Kumar et al., 2016)
was subsequently used to concatenate the
partial sequences of non-protein-coding 12S
and 16S mitochondrial rRNA genes, and also
to calculate the number of base substitutions
per site from between sequences (i.e. pairwise
genetic distance matrix) using the Maximum
Composite Likelihood model (Tamura et al.,
2004) with the elimination of all positions
containing gaps and missing data, and then to
reconstruct  phylogenetic  trees  using
Neighbour Joining method (a distance-based
method with clustering algorithm as the tree
building strategy) and Maximum Parsimony
method (a character-based method with
optimality criterion as the tree building
strategy). Modeltest (version 3.7) program
(Posada and Crandall, 1998) was used to
calculate and find the best model for DNA
evolution prior to the reconstruction of
Maximum Likelihood phylogenetic trees using
PAUP* (version 4.0b10) program (Swofford,
1998) with 100 bootstrap replicates. A number
of 56 models of DNA substitution were tested
in order to choose the model that fitted the
data best.

Meanwhile, the reconstructions of
consensus Bayesian phylogenetic trees (using
Bayesian Analysis method, a character-based
method with optimality criterion as the tree
building strategy) were done by using
MrBayes (version 3.1.2) program
(Huelsenbeck and Ronquist, 2001). TreeView
(version 1.6.6) program (Page, 1996) and
paint.net 4.0.6 (Final 4.6.5693.28) program
(Copyright 2015 dotPDN LLC, Rick
Brewster, and contributors) were used to
display and edit the reconstructed phylogenetic
trees.

3. Results and discussion

Table 1 indicates the number of base
substitutions per site from between
concatenated gene sequences of non-protein-
coding 12S and 16S mitochondrial rRNA
genes. A number of 47 nucleotide sequences
and a total of 769 positions were involved in
the final dataset. The genetic distance values
between specimens that were identified as S.
horrens ranged from 0 (0 %) to 0.0390 (3.9 %)
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with average genetic distance of 0.0131 (1.31
%), thus suggesting their status as single
morphospecies i.e. morphospecies S. horrens.
Besides, the genetic distance values between
PKSHI1 specimen (from Kudat, Sabah) and
other S. horrens specimens including the
reference samples of SHP ranged from 0.0325
(3.25 %) to 0.0390 (3.9 %). Meanwhile, the
genetic distance value between S. vastus
specimens i.e. PKSOIl (from Kudat, Sabah)

and LKIG7 was 0.0185 (1.85 %). The genetic
distance values between 7. anax specimens i.e.
KKS specimens (from Kota Kinabalu, Sabah)
ranged from 0.0012 (0.12 %) to 0.0375 (3.75
%) with average genetic distance of 0.0181,
thus suggesting their status as single
morphospecies i.e. morphospecies 7. anax.
Furthermore, the average genetic distance
between Stichopus specimens was 0.1340
(13.4 %).

Table 1 Pairwise genetic distance matrix of sequences of concatenated gene sequences of non-
protein-coding 12S and 16S mitochondrial rRNA genes of sea cucumber specimens from selected
Malaysian markets and other sampling sites including the reference samples and processed

specimens.
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With regard to the timun laut specimens,
the average genetic distance value between
Holothuria specimens including the reference
samples of HLTNP was 0.1112 (11.12 %).
Moreover, the genetic distance values between
H. leucospilota specimens (HLTNP specimens
and HL1 specimen from Pangkor Archipelago,
Perak) ranged from 0.0086 (0.86 %) to 0.0277
(2.77 %) with an average genetic distance of
0.0169 (1.69 %). The genetic distance values
between HL1 specimen (from Pangkor
Archipelago, Perak) and other H. leucospilota
specimens ranged from 0.0086 (0.86 %) to
0.0277 (2.77 %). Furthermore, the genetic
distance values between H. scabra specimens
(PKS specimens from Kudat, Sabah) ranged
from 0.0013 (0.13 %) to 0.0140 (1.4 %) with
an average genetic distance of 0.0066 (0.66
%), while the genetic distance values between
H. lessoni specimen ie. KPTS1 (from
Kuantan, Pahang) and H. scabra specimens
ranged from 0.0179 (1.79 %) to 0.0284 (2.84
%). As for the H. atra specimens (PFKK6
specimen from Kota Kinabalu, Sabah and
specimens of PM3 and PM4 from Manukan
Island, Sabah), the average genetic distance
was 0.0835 (8.35 %) ranging from 0 (0 %) to
0.1253 (12.53 %), with the genetic distance
value between PFKK6 specimen and PM3
specimen was 0 (0 %). The average genetic
distance between H. edulis specimens (PFKK
specimens from Kota Kinabalu, Sabah and
PM1 specimen from Manukan Island, Sabah)
excluding PFKK6 specimen was 0.0293 (2.93
%) ranging from 0 (0 %) to 0.1539 (15.39 %),
thus suggesting their status as single
morphospecies i.e. morphospecies H. edulis.
The genetic distance values between PMI
specimen and PFKK specimens excluding
PFKK6 specimen ranged from 0 (0 %) to
0.1182 (11.82 %).

With regard to the Neighbour Joining
analyses using concatenated gene sequences of
non-protein-coding 12S and 16S mitochondrial
rRNA genes, the optimal tree with the sum of
branch length = 7.50559484 is shown in
Figure 2. The percentage of replicate trees in
which the associated taxa clustered together in
the bootstrap test (i.e. 1000 replicates) are
shown next to the branches (Felsenstein,

1985). The tree was drawn to scale, with
branch lengths in the same units as those of the
evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances
were computed wusing the Maximum
Composite Likelihood method (Tamura et al.,
2004) and are in the units of the number of
base substitutions per site. All positions
containing gaps and missing data were
eliminated. A number of 48 taxa consisting of
47 ingroup taxa and one outgroup taxon, and
749 characters representing aligned base
positions (after multiple alignment) were
involved in the phylogenetic analyses of the
sequences of concatenated gene sequences of
non-protein-coding 12S and 16S mitochondrial
rRNA genes using Neighbour Joining method.
The outgroup taxon was an individual of
Peniagone sp., a deep-sea swimming sea
cucumber species with GenBank Accession
No. KF915304.

Figure 2 illustrates the presence of 2
main groups of the specimens: the timun laut
family with 47 % bootstrap support and a few
clusters representing family Stichopodidae (the
gamat family). A number of 3 gamat species
1.e. S. horrens, S. vastus, and T. anax were
representing the family Stichopodidae. 7. anax
was divided into 2 clusters and S. horrens
cluster was supported by 96 % bootstrap value.
Nonetheless, the specimens of S. vastus were
also grouped into the S. horrens due to their
close genetic relationship. As mentioned
earlier, the genetic distance value between S.
vastus specimens i.e. PKSO1 (from Kudat,
Sabah) and LKIG7 was low i.e. 0.0185 (1.85
%). S. vastus cluster was supported with 97 %
bootstrap value. In addition, the specimens of
PFKK excluding PFKK6 specimen were
clustered as H. edulis with 91 % bootstrap
support. Purcell et al. (2012) recorded a
processed H. lessoni that is similar to the dried
tip-sum (KPTS1), therefore the specimen was
regarded as H. lessoni. In terms of the species
status of PM specimens, the analyses
identified PM1 specimen as H. edulis, and the
specimens of PM3 and PM4 as H. atra.
Therefore, the specimens of H. leucospilota
that formed a cluster with 92 % bootstrap
value, the specimens of H. edulis that formed a

Maritime Technology and Research 2019; 1(2)
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cluster with 91 % bootstrap value, the
specimens of H. scabra that formed a cluster
with 66 % bootstrap value, the dried specimen
of H. lessoni (KPTS1), and the specimens of
H. atra that formed a cluster with 79 %
bootstrap value were the 5 timun laut species
that grouped under the family Holothuriidae
with 47 % bootstrap support. H. atra was

genetically closer to H. edulis with 68 %
bootstrap support. Furthermore, the subgenus
Mertensiothuria represented by the specimens
of H. leucospilota was genetically closer to the
subgenus Halodeima represented by the
specimens of H. atra and H. edulis with 46 %
bootstrap  value, thus supporting their
taxonomic classification.

PFKK3 125 165
45 PFKKS 125 165
PFKK4 125 165
PFKK5 125 165
PFKK16 125 165
PFKK1 125 165
PFKK14 125 165
o1 | PFKK11 125 165
| PFKK7 125 165
PFKK15 125 165
PFKK12 125 165

PFKK13 125 165
PFKK9 125 16S

H. edulis

PFKK2 125 165

PM1 125 165

46| — PM4 125 165
{PMEI 125 165 H. aira

PFKK6 125 165

HLTNPZ 125 165

a7 =
e 120 1% | H. leucospilota
7 HLTNP3 125 165 .
kers112s16s | H. lessoni

PK54 125 165
PKS3 125 16S

PKS1 126 165 H. scabra

S. vastus 7]

S. horrens

KF915304 125 165

T. anax

T. anax
OUTGROUP

Figure 2 Topology of 50 % majority-rule consensus tree of Neighbour Joining of sea cucumber
specimens from selected Malaysian markets and other sampling sites including the reference
samples and processed specimens inferred from concatenated gene sequences of non-protein-coding
12S and 16S mitochondrial rRNA genes using MEGA7 program (Kumar et al., 2016) with 1000
bootstrap replicates. Numbers at nodes indicate the bootstrap values in percentage (%).
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As for the Maximum Parsimony analyses
using concatenated gene sequences of non-
protein-coding 12S and 16S mitochondrial
rRNA genes, the bootstrap consensus tree
inferred from 1000 replicates was taken to
represent the evolutionary history of the taxa
analysed (Felsenstein, 1985). Branches
corresponding to partitions reproduced in less
than 50 % bootstrap replicates were collapsed.
The percentage of replicate trees in which the
associated taxa clustered together in the
bootstrap test (1000 replicates) are shown next
to the branches (Felsenstein, 1985). The
Maximum Parsimony tree was obtained using
the Subtree-Pruning-Regrafting (SPR)
algorithm (Nei & Kumar, 2000) with search
level 1 in which the initial trees were obtained
by the random addition of sequences (10
replicates). All positions containing gaps and
missing data were eliminated. Besides, a
number of 48 taxa consisting of 47 ingroup
taxa and one outgroup taxon, and 749
characters representing aligned base positions
(after multiple alignment) were involved in the
phylogenetic analyses.

Figure 3 illustrates the presence of 2
main clusters of the specimens: family
Stichopodidae (the gamat family) and the
timun laut family, both with 90 % bootstrap

support and 99 % Dbootstrap support,
respectively. A number of 3 gamat species i.e.
S. horrens, S. vastus, and T. anax were
clustered under the family Stichopodidae. T.
anax cluster was supported by 99 % bootstrap
value, S. horrens cluster was supported by 76
% bootstrap value, and S. vastus cluster was
supported by 93 % bootstrap value. S. vastus
was genetically closer to S. horrens with 99 %
bootstrap support. Furthermore, the specimens
of H. leucospilota that formed a cluster with
99 % bootstrap value, the specimens of H.
edulis that formed a cluster with 99 %
bootstrap value, the specimens of H. scabra
that formed a cluster with 88 % bootstrap
value, the dried specimen of H. lessoni
(KPTS1), and the specimens of H. atra that
formed a cluster with 99 % bootstrap value
were the 5 timun laut species that grouped
under the family Holothuriidae with 98 %
bootstrap support. H. atra was genetically
closer to H. edulis with 51 % bootstrap
support. Likewise the Neighbour Joining
analyses, the subgenus Mertensiothuria
represented by the specimens of H.
leucospilota was genetically closer to the
subgenus Halodeima represented by the
specimens of H. atra and H. edulis with 93 %
bootstrap value.

Maritime Technology and Research 2019; 1(2)
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H. leucospilota
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~| OUTGROUP

Figure 3 Topology of 50 % majority-rule consensus tree of Maximum Parsimony of sea cucumber
specimens from selected Malaysian markets and other sampling sites including the reference
samples and processed specimens inferred from concatenated gene sequences of non-protein-coding
12S and 16S mitochondrial rRNA genes using MEGA7 program (Kumar et al., 2016) with 1000
bootstrap replicates. Numbers at nodes indicate the bootstrap values in percentage (%).

Pertaining to the Maximum Likelihood
analyses using concatenated gene sequences of
non-protein-coding 12S and 16S mitochondrial
rRNA genes, Modeltest (version 3.7) program
time-reversible

suggested general

(GTR)

model (Tavaré, 1986) with the rate variation
among sites (+G) (i.e. GTR+G) as the best
model of DNA substitution based on the
Akaike Information Criterion (AIC);
Tamura and Nei (TrN) model (Tamura & Nei,

and

Maritime Technology and Research 2019; 1(2) 13
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1993) with the rate variation among sites (+G)
(i.e. TtN+G) as the best model of DNA
substitution based on the Hierarchical
Likelihod Ratio Tests (hLRTs). The GTR
model and the TrN model were based on
unequal base frequencies. According to Posada
and Buckley (2004), the AIC and Bayesian
Analysis are good at the evaluation of model
selection uncertainty, capable to compare
multiple nested or non-nested models at once,
and allow for the use of all available models
for the estimation of phylogenies and model
parameters. Hence, between the AIC and the
hLRTs used in Modeltest program, the model
of DNA substitution suggested by the AIC is
better. The GTR+G model suggested by the
AIC was chosen for the Maximum Likelihood
tree reconstruction (Lset Base=(0.3343 0.2070
0.1869) Nst=6 Rmat=(2.4444 4.2221 1.8990
1.0703 7.6112) Rates=gamma Shape=0.7426
Pinvar=0)).

A number of 48 taxa consisting of 47
ingroup taxa and one outgroup taxon, and 859
characters representing aligned base positions
(after multiple alignment) were involved in the
phylogenetic analyses. Overall, the base
frequencies were unequal (i.e. Adenine (A) =
33.43 %, Cytosine (C) = 20.70 %, Guanine (G)
= 18.69 %, and Thymine (T) =27.18 %)), thus
supporting the selection of GTR+G model by
the AIC as the best model. In addition, Figure
4 illustrates the presence of 2 clusters of
family Stichopodidae (the gamat family) i.e.
genus Stichopus cluster with 86 % bootstrap
support and genus Thelenota cluster with 66 %
bootstrap support; and the timun laut family
with 59 % bootstrap support. A number of 3
gamat species i.e. S. horrens, S. vastus, and T.
anax under the family Stichopodidae were
identified. 7. anax cluster was supported by 66
% bootstrap value, S. horrens cluster was
supported by 62 % bootstrap value, and S.
vastus cluster was supported by 94 %
bootstrap value. S. vastus was genetically
closer to S. horrens with 86 % bootstrap
support. Besides, the specimens of H.
leucospilota that formed a cluster with 91 %
bootstrap value, the specimens of H. edulis
that formed a cluster with 90 % bootstrap
value, the specimens of H. scabra (with the

inclusion of the dried specimen of H. lessoni
(KPTS1)) with 90 % bootstrap value, and the
specimens of H. atra that formed a cluster
with 98 % bootstrap value were the 5 timun
laut species that grouped under the family
Holothuriidae with 59 % bootstrap support.

Furthermore, the phylogenetic analysis of
Bayesian Analysis method was ended when
the standard deviation of split frequencies was
below 0.01. Accordingly, for the Bayesian
Analysis analyses of concatenated gene
sequences of non-protein-coding 12S and 16S
mitochondrial rRNA genes, the standard
deviation of split frequencies was 0.007697 at
1,780,000 generations. Figure 5 illustrates the
presence of 3 main groups of the specimens:
family Stichopodidae (the gamat family) with
66 % posterior probability, and 2 subclusters
of the timun laut family. A number of 3 gamat
species i.e. S. horrens, S. vastus, and T. anax
were clustered under the family Stichopodidae.
T. anax cluster was supported by 87 %
posterior probability, S. horrens cluster was
supported by 50 % posterior probability and S.
vastus cluster was supported by 99 % posterior
probability.

The specimens of H. leucospilota that
formed a cluster with 98 9% posterior
probability, the specimens of H. edulis that
formed a cluster with 95 9% posterior
probability, and the specimens of H. atra that
formed a cluster with 89 9% posterior
probability were the 3 timun laut species that
formed one of the subclusters of the timun laut
family with 65 % posterior probability. The
specimens of H. scabra that formed a cluster
with 94 % posterior probability and the dried
specimen of H. lessoni (KPTS1) were the 2
timun laut species that formed the other
subcluster of the timun laut family with 90 %
posterior probability. Moreover, H. edulis was
closer to H. atra with 75 % posterior
probability, and H. scabra was closer to H.
lessoni with 90 % posterior probability.
Likewise the Neighbour Joining analyses and
the Maximum Parsimony analyses, the
subgenus Mertensiothuria represented by the
specimens of H. leucospilota was genetically
closer to the subgenus Halodeima represented

14 Maritime Technology and Research 2019; 1(2)
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by the specimens of H. atra and H. edulis with
65 % posterior probability.

In addition, the Maximum Likelihood tree
(Figure 4) and the Bayesian Analysis tree
(Figure 5) supported that H. scabra was
genetically closer to H. lessoni with 90 %
bootstrap value/posterior probability, thus
supporting their taxonomic classification as
from the subgenus Metriatyla. Except the
Bayesian Analysis tree, the other phylogenetic
trees show the clustering of timun laut
specimens into clusters with 47 - 99 %
bootstrap values, thus suggesting the formation
of timun laut group. In summary, 8 sea
cucumber species were recorded in this study
including 5 timun laut species i.e. H.
leucospilota, H. atra, H. edulis, H. scabra, and
H. lessoni; and 3 gamat species i.e. S. horrens,
S. vastus, and T. anax. H. leucospilota, H.
atra, H. edulis, H. scabra, S. horrens, and T.

anax were the commercial Malaysian sea
cucumber species (Choo, 2008). Nevertheless,
H. lessoni and S. vastus were not listed as
commercial Malaysian sea cucumber species.
Among the species recorded in this study, 2
timun laut species were included in the
International Union for Conservation of
Nature (IUCN) Red List for aspidochirotid
holothuroids, whereby H. lessoni and H.
scabra were regarded as “endangered, or at a
high risk of extinction” (Conand et al., 2014).
Apart from that, the outcomes of this study
provide better information on the level of
species substitution and product mislabelling
issues of processed sea cucumbers in
Malaysian markets which may subsequently
assists the enforcement agencies to monitor
and overcome the issues through the
introduction of mtDNA sequencing technique.

Maritime Technology and Research 2019; 1(2) 15
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Figure 4 Topology of 50 % majority-rule consensus tree of Maximum Likelihood of sea cucumber
specimens from selected Malaysian markets and other sampling sites including the reference
samples and processed specimens inferred from concatenated gene sequences of non-protein-coding
12S and 16S mitochondrial rRNA genes using PAUP* (version 4.0b10) program (Swofford, 1998)
with 100 bootstrap replicates. Numbers at nodes indicate the bootstrap values in percentage (%).
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Figure S Topology of consensus Bayesian Analysis tree of sea cucumber specimens from selected
Malaysian markets and other sampling sites including the reference samples and processed
specimens inferred from from concatenated gene sequences of non-protein-coding 12S and 16S
mitochondrial rRNA genes using MrBayes (version 3.1.2) program (Huelsenbeck & Ronquist,
2001), with the addition of all compatible groups to the tree. Numbers at nodes indicate the

posterior probabilities of clades in percentage (%).

4. Conclusions

In conclusion, the phylogenetic trees
based on the distance-based method with
clustering algorithm as the tree building
strategy i.e. the Neighbour Joining method,
and the character-based methods with
optimality criterion as the tree building
strategy i.e. the Maximum Parsimony method,
Maximum Likelihood method, and the
Bayesian Analysis method suggested the
presence of 3 main clusters of the specimens
i.e. gamat family consisting of genus
Stichopus and genus Thelenota; and timun laut
family comprising family Holothuriidae. Three
gamat species i.e. S. horrens, S. vastus, and T.
anax; and 5 timun laut species i.e. H. atra, H.
edulis, H. lessoni, H. leucospilota, and H.

scabra were recorded. This study also
highlights the presence of issues of intentional
species substitution or product mislabeling due
to the observation of unlabelled products in the
selected Malaysian markets. The outcomes of
this study may assist the enforcement agencies
to monitor and address the said issues.
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