Enhancement of biogas production from sewage sludge by biofilm pretreatment method


Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, PO Box 10, Kuala Lumpur, 50728, Malaysia

Abstract

Since the last two decades, different pretreatment methods have been proposed to enhance the yield of biogas production from sewage sludge. In order to improve the biogas yield and to find an alternative and economically suitable pretreatment method, a biological pretreatment method using a biofilm was studied. The biofilm constituted of four strains of bacteria producing hydrolases was used as an immobilized biocatalyst for the pretreatment of the sludge. Based on the data obtained during this study, the optimum biofilm was formed within 2 days. The best amount of granular activated carbon (GAC) that has given an optimum biofilm was 4g. An improvement of 16.9% on the ratio of soluble chemical oxygen demand (SCOD) / total chemical oxygen demand (TCOD) and 28.3% in the volatile solids (VS) was achieved after 12 hours of pre-treatment at room temperature (30 ± 2°C). Comparing to the no pre-treated sludge (control), an increase of 15% in the cumulative biogas production was observed after 14 days of digestion with 30% v/v of inoculum (anaerobic sludge) at 37°C and 25 days of HRT. It can be concluded that the developed pre-treatment method can be used for the enhancement of the biogas production from sewage sludge at mesophilic temperature range. © 2019, Penerbit Akademia Baru.


Sludge minimisation technologies
doi: 10.1007/s11157-005-5728-9
View at Publisher

11. Yu, S., Zhang, G., Li, J., Zhao, Z., Kang, X.
Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge
View at Publisher

Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge
doi: 10.1263/jbb.95.271
View at Publisher

13. Zhen, G., Lu, X., Kato, H., Zhao, Y., Li, Y.-Y.
Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives
doi: 10.1016/j.rser.2016.11.187
View at Publisher

14. Parawira, W.
Enzyme research and applications in biotechnological intensification of biogas production
View at Publisher

Solubilization of primary sewage sludge by freeze-dried Lactobacillus brevis
doi: 10.1016/j.ibiod.2014.04.007
View at Publisher

16. Alam, M.Z., Hanid, N.A.
Development of indigenous biofilm for enhanced biogas production from palm oil mill effluent
Fazil, N.A., Azmi, A.S., Mansor, M.F.
Isolation and screening of potential bacteria with biofilm formation growth of bacteria producing biofilm

Standard Methods for the Examination of Water and Wastewater

Hayet, C., Saida, B.-A., Youssef, T., Hédi, S.
Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test (Open Access)
http://www.journals.elsevier.com/sustainable-environment-research
doi: 10.1016/j.serj.2015.11.001

Tian, X., Trzcinski, A.P., Lin, L.L., Ng, W.J.
Impact of ozone assisted ultrasonication pre-treatment on anaerobic digestibility of sewage sludge
http://www.journals.elsevier.com/journal-of-environmental-sciences/
doi: 10.1016/j.jes.2015.01.003

Anjum, M., Al-Talhi, H.A., Mohamed, S.A., Kumar, R., Barakat, M.A.
Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production
http://www.elsevier.com/inca/publications/store/6/2/2/8/7/1/index.htm

© Copyright 2019 Elsevier B.V., All rights reserved.