Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation

By: Engliman, NS (Engliman, Nurul Sakinah)[1,2]; Abdul, PM (Abdul, Peer Mohamed)[1,2]; Wu, SY (Wu, Shu-Yi)[1,2]; Jahim, JM (Jahim, Jamaliah Mohd)[1,2]

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Volume: 42 Issue: 45 Pages: 27482-27493 Special Issue: SI
DOI: 10.1016/j.ijhydene.2017.05.224
Published: NOV 9 2017
Document Type: Article; Proceedings Paper
View Journal Impact

Abstract

The effect of initial pH, metal oxide and concentration of nanoparticles (NP) on hydrogen production were investigated in batch assays using glucose-fed anaerobic mixed bacteria in thermophilic condition of 60 degrees C. Two type of metal oxide nanoparticles, iron (II) oxide and nickel oxide, were tested and both metal capable of increasing the hydrogen yield about 34.38% and 5.47% higher than the control test. The experiments on the effect of initial pH were done without adding the nanoparticles to determine the optimum pH for maximum hydrogen production, in which at pH 5.5, the maximum hydrogen yield has reached about 1.78 mol H2/mol glucose. However, at pH 5.5 and the optimal iron (II) oxide concentration of 50 mg/L, the maximum hydrogen yield has reached to 1.92 mol H2/mol glucose, and the hydrogen content was 51%. Furthermore, the analysis of metabolites has indicated that the hydrogen production follows the acetic acid pathway. In all experiments with metal oxide nanoparticles, the metal NP was not consumed by the microbes, and the amount of it at the end of the fermentation was similar to the starting amount, which can be concluded that it was acting as an enhancer to the system to improve the hydrogen production. These results suggest that the addition of iron (II) oxide nanoparticles in the system is the vital factor to enhance the hydrogen production. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Keywords

Author Keywords: Anaerobic mixed bacteria; Thermophilic; Nanoparticles (NPs); Biohydrogen production

KeyWords Plus: HYDROGEN-PRODUCTION; SILVER NANOPARTICLES; NICKEL NANOPARTICLES; WASTE-WATER; ENHANCEMENT; BACTERIA; STARCH; OPTIMIZATION; EFFICIENCY; CELLULOSE

Author Information

Reprint Address: Jahim, JM (reprint author)
Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Chem & Proc Engn, Bangi 43600, Selangor, Malaysia.

Addresses:
1 Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Chem & Proc Engn, Bangi 43600, Selangor, Malaysia
2 IIUM, Kuliliyyah Engn, Dept Biotechnol Biochem Engn, POB 10, Kuala Lumpur 50728, Malaysia
3 Feng Chia Univ, Dept Chem Engn, Taichung 40724, Taiwan

E-mail Addresses: nurulsakinah0912@gmail.com; jamal@ukm.edu.my

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universiti Kebangsaan Malaysia-YSAS Sime Darby Malaysia (UKM-YSD) Program</td>
<td>KK-2016-002 GUP-2016-040</td>
</tr>
</tbody>
</table>

Citation Network

In Web of Science Core Collection

11 Times Cited

Most recently cited by:

Abd Naasir, Muhammad Azri; Jahim, Jamaliah Mohd; Abdul, Peer Mohamed; et al. The use of acidified palm oil mill effluent for thermophilic biomethane production by changing the hydraulic retention time in anaerobic sequencing batch reactor. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2019)

Hwang, Young; Sivagunathan, Periyasamy; Lee, Mo-Kwon; et al. Enhanced hydrogen fermentation by zero valent iron addition. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2019)

Use in Web of Science

Web of Science Usage Count

0 4

Last 180 Days Since 2013

Learn more

This record is from:

Web of Science Core Collection
- Science Citation Index Expanded
- Conference Proceedings Citation Index-Science

Suggest a correction

If you would like to improve the quality of this record, please suggest a correction.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Times Cited</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Published</th>
<th>Journal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria</td>
<td>392</td>
<td>Amend, JP; Shock, EL</td>
<td>25</td>
<td>2</td>
<td>175-243</td>
<td>APR 2001</td>
<td>FEMS MICROBIOLOGY REVIEWS</td>
</tr>
<tr>
<td>2</td>
<td>Production of bioengineering and biochemicals from industrial and agricultural wastewater</td>
<td>1</td>
<td>Angemesta, LT; Karima, K; Al-Dahhana, MH; et al.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trends Biotechnol</td>
</tr>
<tr>
<td>3</td>
<td>Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum</td>
<td>41</td>
<td>Beckers, Laurent; Hilligsmann, Serge; Lambert, Stephanie D.; et al.</td>
<td>133</td>
<td></td>
<td>109-117</td>
<td>APR 2013</td>
<td>BIORESOURCE TECHNOLOGY</td>
</tr>
<tr>
<td>4</td>
<td>Metabolic flux network and analysis of fermentative hydrogen production</td>
<td>55</td>
<td>Cai, Guiqin; Jin, Bo; Monis, Paul; et al.</td>
<td>29</td>
<td>4</td>
<td>375-387</td>
<td>JUL-AUG 2011</td>
<td>BIOTECHNOLOGY ADVANCES</td>
</tr>
<tr>
<td>5</td>
<td>Renewable hydrogen generation by bimetallic zero valent iron nanoparticles</td>
<td>40</td>
<td>Chen, Ku-Fan; Li, Shaolin; Zhang, Wei-kian</td>
<td>170</td>
<td>2-3</td>
<td>Special Issue 51 Pages 562-567</td>
<td>JUN 2011</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Advances in biohydrogen production processes: An approach towards commercialization</td>
<td>135</td>
<td>Das, Debabrata</td>
<td>34</td>
<td>17</td>
<td>Pages 7343-7357</td>
<td>INTERNATIONAL JOURNAL OF HYDROGEN ENERGY</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</td>
<td>75</td>
<td>Ding, Jie; Wang, Xu; Zhou, Xue-Fei; et al.</td>
<td>101</td>
<td>18</td>
<td>Pages 7005-7013</td>
<td>BIORESOURCE TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 degrees C) and thermophilic (55 degrees C) treatments for decolourisation of textile wastewaters</td>
<td>69</td>
<td>dos Santos, AB; Bisschops, IAE; Cervantes, FJ; et al.</td>
<td>55</td>
<td>9</td>
<td>Pages 1143-1157</td>
<td>CHEMOSPHERE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A critical literature review on biohydrogen production by pure cultures</td>
<td>85</td>
<td>Elsharnouby, Omneya; Hafez, Hisham; Nakhla, George; et al.</td>
<td>38</td>
<td>12</td>
<td>Pages 4945-4966</td>
<td>INTERNATIONAL JOURNAL OF HYDROGEN ENERGY</td>
<td></td>
</tr>
</tbody>
</table>