Discrete tonal noise of NACA0015 airfoil at low Reynolds number
(Article)

Andan, A.D. Lee, D.-J.

Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, 53100, Malaysia

Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejon, 34141, South Korea

Abstract

This paper is a pilot study of the effect of external forcing and passive control on the generation of airfoil whistle noise. Interaction between instability travelling inside laminar boundary layer with the airfoil trailing edge produces discrete tonal noise. This phenomenon commonly found at low-to-moderate Reynolds numbers. The characteristics and behavior of tonal emissions at low Reynolds number differs from that at higher Reynolds number. Therefore, the purpose of this work is to study the discrete tonal noise generated by laminar boundary layer instability at low Reynolds number as well as at a variation of angle of attack.

Experimental testing on NACA0015 was done in the anechoic wind tunnel to measure the sound spectrum at Reynolds number of Re~10⁹ and angle of attack of 0°≤α≤5°. This work is intended to provide additional information to the tonal behavior of NACA series airfoil. Flow separation without reattachment occurs on the suction side within the selected Reynolds number and angle of attack. No tonal sound was found if fs falls below 40dB. At low Reynolds number, airfoil discrete tone consists of high intensity fₙ accompanied by more pronounced fₛ as freestream velocity increases. Airfoil tonal noise gradually decreases as angle of attack increases from α=0° before disappearing beyond α=5°. Moreover, previously proposed empirical models to predict fs were found to have limitation in predicting tonal frequency at low Reynolds number at a variation of angle of attack. In addition, general observation shows fₙ has a velocity dependency of ~U⁰.₈ while fₛ is prone to exhibit ladder structure behavior with velocity dependency of ~U¹.₃. © 2019 Penerbit Akademia Baru.

SciVal Topic Prominence

Topic: Aeroacoustics | Airfoils | Edge serrations

Prominence percentile: 95.650

Author keywords

Anechoic wind tunnel | Discrete tonal noise | Flow Instabilities

ISSN: 22897879
Source Type: Journal
Original language: English

Document Type: Article
Publisher: Penerbit Akademia Baru

View search results format >
1. Lowson, M., Fiddes, S., Nash, E.
Laminar boundary layer aero-acoustic instabilities

2. Nash, E.C., Lowson, M.V., McAlpine, A.
Boundary-layer instability noise on aerofoils
http://journals.cambridge.org/action/displayJournal?jid=FLM
doi: 10.1017/S002211209800367X
View at Publisher

3. Hersh, A.S., Hayden, R.E.
Aerodynamic sound radiation from lifting surfaces with and without leadingedge serrations

Vortex noise of isolated airfoils
doi: 10.2514/3.60229
View at Publisher

On the generations of whistle noise from an airfoil and a simplified side mirror
ISBN: 978-156347974-8

6. Pröbsting, S., Yarusevych, S.
Laminar separation bubble development on an airfoil emitting tonal noise
http://journals.cambridge.org/action/displayJournal?jid=FLM
doi: 10.1017/jfm.2015.427
View at Publisher

7. CLARK LT
Radiation of sound from an airfoil immersed in a laminar flow

8. Arbey, H., Bataille, J.
Noise generated by airfoil profiles placed in a uniform laminar flow
doi: 10.1017/S0022112083003201
View at Publisher

9. Brooks, T.F., Stuart Pope, D., Marcolini, M.A.
Airfoil self-noise and prediction
Airfoil trailing-edge flow measurements
doi: 10.2514/3.9426
View at Publisher

11. Moreau, S., Henner, M., Iaccarino, G., Wang, M., Roger, M.
Analysis of Flow Conditions in Freejet Experiments for Studying Airfoil Self-Noise
View at Publisher

12. Moreau, D.J., Doolan, C.J., Nathan Alexander, W., Meyers, T.W., Devenport, W.J.
Wall-mounted finite airfoil noise production and prediction
ISBN: 978-162410367-4

13. Tam, C.K.W.
Discrete tones of isolated airfoils
doi: 10.1121/1.1914682
View at Publisher

14. Wright, S.E.
The acoustic spectrum of axial flow machines
doi: 10.1016/0022-460X(76)90596-4
View at Publisher

15. Akishita, S.
Tone-like noise from an isolated two dimensional airfoil

16. Fink, M.R.
Prediction of airfoil tone frequencies
doi: 10.2514/3.44421
View at Publisher

17. Jones, L.E., Sandberg, R.D.
Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops
doi: 10.1016/j.jsv.2011.07.009
View at Publisher

18. Tam, C.K.W., Ju, H.
Analysis of Flow Conditions in Freejet Experiments for Studying Airfoil Self-Noise
Cited 51 times
View at Publisher

Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil

Plogmann, B., Herrig, A., Würz, W.

View at Publisher

Airfoil noise measurements at various angles of attack and low Reynolds number
Arcondoulis, E., Doolan, C.J., Zander, A.C.

An investigation of airfoil tonal noise at different Reynolds numbers and angles of attack
Chong, T.P., Joseph, P.F., Kingan, M.J.
doi: 10.1016/j.apacoust.2012.05.016

View at Publisher

Computation of trailing-edge flow and noise using large-eddy simulation
Wang, M., Moin, P.
doi: 10.2514/2.895

View at Publisher

Broadband Self-Noise from Loaded Fan Blades
Roger, M., Moreau, S.
http://arc.aiaa.org/loi/aiaaj

doi: 10.2514/1.9108

View at Publisher

Tonal noise of a controlled-diffusion airfoil at low angle of attack and Reynolds number
Padois, T., Laffay, P., Idier, A., Moreau, S.
http://scitation.aip.org/content/asa/journal/jasa

doi: 10.1121/1.4958916

View at Publisher

Andan, A.D.; Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University
Malaysia, Kuala Lumpur, Malaysia; email:ameldadianne@iium.edu.my
© Copyright 2019 Elsevier B.V., All rights reserved.