

AUTONOMOUS SYSTEMS AND ROBOTICS RESEARCH UNIT

Harnessing Bio-signals for Advanced Man-Machine Applications

Shahrul Naim Sidek

Dept. of Mechatronics Engineering, IIUM

International Conference on Innovative Technology, Engineering and

Sciences (*iCITES'18*), UNIMAP, PEKAN, PAHANG 1 March 2018

© 2012 IIUM. All Rights Reserved. http://www.iium.edu.my

Outline

- 1. Fundamental and historical background of bio-signals
- 2. Research 1: Muscle modeling from biosignals
- 3. Research 2: Emotion identification from biosignals

Introduction

- 1. Bio-signals are widely used for assessment of human functional states
- 2. Use in classical application in medical diagnosis to consumer products with emotion detection

http://www.iium.edu.my

Definition

Within the scope of biomedical signals and sensors – biosignal is a description of a physiological phenomenon in living beings

In the broadest sense, the variety of biosignals extends from visual inspection of a patient ..

.. up to signals recorded from human body by the mean of sensors

Amongst the very first biosignals

... for diagnostic purpose using different methods **Inspection**: visualization by the use of naked eye

Hippocrates of Cos (c. 460 - c. 375 BC) – "It is necessary to begin with the most important things and those most easily recognized."*

Palpation : feeling of body surface, often accompanied by soft pressure

Galen of Pergamum (129-200) – "The feeling of artery striking the fingers" when describing pulsation – "the worm –like pulse, feeble and beating quickly, the ant-like pulse that has sunk to extreme limit of feebleness"

http://www.iium.edu.my

Amongst the very first biosignals

... for diagnostic purpose using different methods **Percussion** : striking the body with short, sharp taps of a finger

Leopold Auenbrugger (1722-1809) – introduced the technique - "a slow tapping with the fingers, brought closed together and extended, on the finger of the other hand laid on the chest".

Auscultation : listening inner body sounds

Rene T. H. Laennec (1781-1826) –invented the precursor to modern stethoscope from a roll of paper applied to precordial region at one end and his ear at the other end 1816

Problem with original bio-signals acquisition methods

Lack objective evaluation of diagnosis:

<u>Proof of biosignals</u> – the signal couldn't be reproduced due to observer's variability and lack of archival storage

<u>Analysis of biosignals</u> – really relied on the physician instantaneous impression , thus strongly restricted to personal experience

Problem with original bio-sisgnal acquisition methods

Lack objective evaluation of diagnosis:

<u>Comparison of biosignals</u> – also depend on the physician and one's experience

Dissemination of biosignals – lack of archives

Notable contemporary solutions to the problems

Produce objective characterization:

Verbal description – Ibn Sina (980-1037), defined 50 different pulses – "irregular pulse as the flight of a gazelle; stonebullet shot out of a crossbow; scattered leaves".

Musical note – Francois Nicolas Marquet (1687-1759), defined 30 different pulses documented in musical notes.

Abb. 1: Parallelnotierung des gleichmäßigen Schlagens des Herzens (oberes System) und eines Menuetts (unteres System) (aus: Marquet, 1769, o. S.).

Notable contemporary solution to the problems

Objective characterization

Technical tool – In 1855, Karl von Vierordt (1818-1884) invented the first sphygmograph to measure blood pressure using mechanical balance and weight.

http://www.iium.edu.my

Classification of biosignals

Based on the origin of the signals:

Trend in biosignals monitoring and applications

Biosignals reflect human health and well-being The development in the field is fast.

From pre-screening of human functional state and diagnosis of illness,

- it has moved on to subsequent therapy, followup treatment, appraisal of it efficiency
- it has improved the quality of interaction between the man and the machine

Research in BioMechatronics Laboratory, IIUM

http://www.iium.edu.my

Traumatic injury on thumb, the only opposable digit could great affect the function of hand.

In case of total amputation, the muscles in remaining part however still function in normal way.

Motivation is to leverage muscle information to develop prosthetics/orthotics devices that could perform as close as the original thumb.

Objective: To develop thumb tip force prediction model using biosignals : EMG & Ultrasound signal of muscle lengths

1. Hill's muscle model to predict thumb tip force – thumb muscles

1. Hill's muscle model to predict thumb tip force – measurement system

1. Hill's muscle model to predict thumb tip force – EMG using Gtec

Figure: EMG signals fro different muscles

1. Hill's muscle model to predict thumb tip force – muscle length

Fig. 8. APB muscle measured by MRI machine

MRI to provide gold standard

Fig. 9. APB muscle measured by ultrasound probe

Figure: Measurement by ultrasound machine by radiologist

RANGE STREET, S

http://www.iium.edu.my

Table 3. Muscle length measured from MRI and ultrasound

	· · ·	0	(Он.)	signais			10
Sub	Muscle	0°	0°	30°	60°	90°	90°
		MRI	Ult.	Ult.	Ult.	MRI	Ult.
		(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
	AP	3.51	3.52	4.31	5.64	5.93	5.93
Sub. 1	FPB	4.76	4.72	5.17	5.39	5.60	5.60
	APB	4.75	4.75	5.37	5.83	6.09	6.02
	FDI	6.37	6.33	6.46	6.63	6.92	6.96
	AP	3.14	3.08	4.24	4.61	5.64	5.63
Sub.	FPB	4.86	4.81	4.93	5.13	5.31	5.25
2	APB	5.96	5.64	5.81	6.02	7.00	6.36
	FDI	5.17	5.24	5.34	5.44	5.69	5.66
Sub 3	AP	3.43	3.41	3.88	4.65	5.07	5.06
	FPB	4.65	4.55	4.83	5.12	5.60	5.57
	APB	5.3	5.29	5.43	5.93	6.26	6.21
	FDI	5.07	5.08	5.35	5.68	6.46	6.01

Table 4. Optimised values of $F_{CE_{max}}$, L_{CE_0} , \emptyset , S and A

Muscle	F _{CEmax} (N)	$L_{CE_0}(cm)$	Ø	S	A
AP	260.281	5.366		0	
FPB	207.790	4.993	0.700	0.010	0.70
APB	92.289	4.363	0.723	0.010	0.724
FDI	28.009	7.040			

Fig. 11(a). Plot of measured (black) vs. predicted (grey) thumb-tip force at 0° and 30° with new multiplier.

Table 5. RMSE performance of model developed as compared to model by Park et al.

Flexion angle	Model developed	Park et al., 2012
0°	1.784	1.866
15°	-	3.299
30°	1.862	3.453
45°	, E	4.425
60°	1.822	
90°	1.349	141

More subjects for more universal model

Explicit and implicit communication plays significant role in effective interaction

Verbal, facial expression, body language could be emotionally masked causing deterred interaction

Motivation is to leverage autonomic nervous system (ANS) parameters to detect true affective state – used by autonomous agents for effective interaction

Objective: To develop non-invasive, contactless, seamless (subject & sensor) system to identify affective states of subjects from **frontal facial thermal imprint as biosignal**

State	Definition
Happiness	Feeling of pleasure, satisfaction with performance
Fear	Extreme worries, anxiety and panic
Anger	Extreme degree of negative affect toward someone or something
Disgust	Revulsion, disapproval, annoyance or irritation
Sadness	Feeling of melancholy beyond negative self- efficacy
Surprise	An unexpected or astonishing event, fact or thing

Figure: Prototypical emotion (Ekman, 1992) – categorical based classification

2. Thermal imprint to predict affective states - methodology

Figure: Framework for affective state identification

2. Thermal imprint to predict affective states — experimental setup and procedure

Figure: Experimental setup. Procedure and Questionnaire

莨

265

Figure: ROIs: Supraorbital, periorbital, nose and mouth

Feature extracted: Using statistical Gray Level Cooccurrence Matrix (GLCM):

4-second order statistical features of the image (contrast, correlation, energy and homogeneity)

Experiment conducted:

30 healthy subjects, 15 males and female

Age: between 21 to 28 years old

Stimuli: Video clips

The collected data were down sampled to 80 thermal images (from

1200 images) per subject per emotion

Table 4.5: Contribution of Indi-

Table 4.7: The Accuracy	of Two	Combined	Features
-------------------------	--------	----------	----------

Interpixel Distance (d)	
Feature	d=1 (
CON	83.8%
COR	88.8%
ENR	79.8%
HMS	80.6%

Figure: The best result

-0-	
GOD	Indian
Q Z R	DULENCIO
GOD	

Interpixel Distance (d)		
Feature	d=1 (Accuracy)	d=2 (Accuracy)
CON	83.8% (+)	83.5% (+)
COR	88.8% (+)	89.3% (+)
ENR	79.8% (-)	77.3% (-)
HMS	80.6% (-)	79.4% (-)
Average	83.25%	82.38%
CON-COR	86.6%	86.5%

Table: Confusion Matrix for 6 basic emotions

			Predict	ted Class		_	
Actual		Disgust	Angry	Fear	Нарру	Sad	Surprise
Class	Disgust	30553(79.6	<mark>%1755</mark>	1257	1171	2225	1439
	Angry	1158	34142(88.	<mark>9</mark> 605	693	1045	757
	Fear	887	582	34636(90.	<mark>2</mark> 710	996	589
	Нарру	670	574	528	35497 _{(92.}	4 <mark>614</mark>	517
	Sad	2123	1722	1310	1059	30947 _{(80.}	1239
	Surprise	1132	877	717	733	991	33950(88.

Performance: Average classification accuracy of 86.7%.

2. Thermal imprint to predict affective states - children

http://www.iium.edu.my

Figure: ROIs: Supraorbital, periorbital

(Xmin. Vmin

Experiment conducted: 16 healthy subjects, Age: between 6 to 9 years old Stimuli: Pictures from IAPS – In The collected data were down s images) per subject per emotior Sad is not considered due to lov

ROI	Affective States	j=1	j=2	j=3
	Angry	0.91	0.86	0.78
	Disgust	0.9	0.85	0.77
SupraOrbital	Fear	0.91	0.85	0.78
	Нарру	0.91	0.86	0.78
	Surprise	0.9	0.85	0.77
	Angry	0.9	0.85	0.77
	Disgust	0.89	0.84	0.76
PeriOrbital	Fear	0.9	0.85	0.77
	Нарру	0.88	0.84	0.76
	Surprise	0.9	0.85	0.77

Different threshold values from MOC

http://www.iium.edu.my

(Region of Interests (ROI)	Hottest region threshold value	Performance of accuracy (%) (correctly classified) k- NN classifiers
Supraorbital	At 50%	89.9
	At 90%	92.4
	At MOC of $j=1$	92.4
	At MOC of $j=2$	84.8
	At MOC of j=3	91.1
Preorbital	At 50%	94.9
	At 90%	93.7
	At MOC of $j=1$	88.6
	At MOC of j=2	93.7
	At MOC of j=3	96.2
Combined	At 50%	97.5
ROIs	At 90%	98.7
(Supraorbital	At MOC of j=1	97.5
+ Preorbital)	At MOC of $j=2$	93.7
	At MOC of j=3	99.2

Ongoing study on Small Children with Autistic Spectrum Disorder (ASD) to solve the problem of social interaction difficulties

Reference:

1. Biomedical Signals and Sensors I, DOI: 10.1007/978-3-642-24843-6_1

