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Outline

1. Fundamental and historical background of bio-signals
2.Research 1: Muscle modeling from biosignals

3.Research 2: Emotion identification from biosignals
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Introduction

1. Bio-signals are widely used for assessment of
human functional states

2.Use in classical application in medical diagnosis to
consumer products with emotion detection
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Definition
Within the scope of biomedical signals and sensors —
biosignal is a description of a physiological
phenomenon in living beings

In the broadest sense,
the variety of biosignals
extends from  visual
inspection of a patient ..

.. up to signals recorded
from human body by
the mean of sensors
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Amongst the very first biosignals

... for diagnostic purpose using different methods
Inspection : visualization by the use of naked eye

Hippocrates of Cos (c. 460 — c. 375 BC) — "It is necessary
to begin with-the most important things and those most
easily recognized.”*

Palpation : feeling of body surface, often
accompanied by soft pressure

Galen of Pergamum (129-200) — “The feeling of artery
striking the fingers” when describing pulsation — “the worm
—like pulse, feeble and beating quickly, the ant-like pulse
~ that has sunk to extreme limit of feebleness”
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Amongst the very first biosignals

... for diagnostic purpose using different methods

Percussion : striking the body with short, sharp
taps of a finger

Leopold Auenbrugger (1722-1809) — introduced the
technique - “a slow tapping with the fingers, brought closed
together and extended, on the finger of the other hand laid

on the chest”.

Auscultation : listening inner body sounds

Ly Rf‘? ¥ 91 1 Rene T. H. Laennec (1781-1826) —invented the precursor to
NV . modern stethoscope from a roll of paper applied to precordial
region at one end and his ear at the other end 1816
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Problem with original bio-signals
acquisition methods

Lack objective evaluation of diagnosis:

Proof of biosignals — the signal couldn’t be
reproduced due to observer’s variability and lack of
archival storage

Analysis of biosignals — really relied on the
physician instantaneous impression , thus strongly
restricted to personal experience
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Problem with original bio-sisgnal
acquisition methods

Lack objective evaluation of diagnosis:

Comparison of biosignals — also depend on the
physician and one’s experience

Dissemination of biosignals — lack of archives
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Notable contemporary solutions to
the problems

Produce objective characterization:

Verbal description — Ibn Sina (980-1037), defined 50 different

pulses — “irregular pulse as the flight of a gazelle; stonebullet shot out of
a crossbow; scattered leaves”.

: L
Musical note — Francois Nicolas Marquet (1687- i LElL L
1759), defined 30 different pulses documented in musical R A R
notes. bt

Abb. 1z Parallelnotierung des gleichmifigen Schiagens des Herzens (oberes Sysiem)
und eines Menuetes (unteres System) (aus: Marguer, 1769, 0. 5.).
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Notable contemporary solution to
the problems

Objective characterization

Technical tool — 1n 1855, Karl von Vierordt (1818-1884) invented
the first sphygmograph to measure blood pressure using mechanical
balance and weight.
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Classification of biosignals

Based on the origin of the signals:
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Trend in biosignals monitoring and
applications

Biosignals reflect human health and well-being
The development in the field is fast.

From pre-screening of human functional state
and diagnosis of illness,

- it has moved on to subsequent therapy, follow-
up treatment, appraisal of it efficiency

- it has improved the quality of interaction
between the man and the machine
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Research in BioMechatronics
Laboratory, [IUM
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1. Hill's muscle model to predict
thumb tip force

Traumatic injury on thumb, the only opposable
digit could great affect the function of hand.

In case of total amputation, the muscles
in remaining part however still function in
normal way.

Motivation is to leverage muscle information to
develop prosthetics/orthotics devices that could
perform as close as the original thumb.
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1. Hill's muscle model to predict
thumb tip force

Objective: To develop thumb tip force prediction
model using biosignals : EMG & Ultrasound
sighal of muscle lengths

Contractile
Seri Element
enes

Element —IS—I
- () ——
Force _m_ Force

Parallel
Element Figure: General Hill's muscle model
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1. Hill's muscle model to predict
thumb tip force

Contractile

Senes Elﬂm

Element __E-
Fome ) o

Parallel
Element Figure: General Hill's muscle model

Fruscte = Feg + Fpe

Fp Emax ((ﬁLPﬁ TR ]ELPE)
F25) (e -4

Fee=a-fi-Feg,,, Fpp =

- Represent force from the action of fibrous

protein; actin and myosin. - Represent force resulted from the

refusal of the muscle to contract

Using PSO to identify unknown constants
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1. Hill's muscle model to predict
thumb tlp fOI‘CE —  thumb muscles

Adductor
Pollicis, AP

Flexor Pollicis
Brevis, FPB

Brevis, APB
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1. Hill's muscle model to predict
thumb t|p force — measurement system

|

e l

Figure: Thumb flexion at 0 degree

Videoclip: System operation

Figure: Thumb flexion at 90 degree
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1. Hill's muscle model to predict
thumb t|p fOI‘CE — EMG using Gtec

EMG Signals for AP Muscle at EMG Signals for FPB Muscle at
0 Degree Thumb Flexion Angle - 0 Degree Thumb Flexion Angle
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Figure: EMG signals fro different muscles
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1. Hill's muscle model to pred
thumb t|p fOrce muscle length

Pesibon on Dorsal Direction of Hand

Three Lines of Measurement

Position from First to Last Digit of Hand

Fig. 8. APB muscle measured by MRI machine

MRI to provide gold standard

Position of Ultrasound Probe

Depth of Muscle

v

Fig. 9. APB muscle measured by ultrasound probe

2 z ; 60° o
Figuee 3,15 Mensuring RO sduscle a€ 607 Hexion angle Figure 3.16: Measuring APB muscle at 60° flexion angle

Figure: Measurement by ultrasound machine by radiologist
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1. Hill's muscle model to predict
thumb tip force

Table 3. Muscle length measured from MRI and ultrasound
(Ult.) signals
0° 0° 30° 60° 90° 90"

Sub |Muscle| MRI | Ult. Ult. Ult. | MRI | Ul

(cm) | (cm) | (em) | (cm) | (cm) | (em)

AP 351 | 352 | 431 | 564 | 593 | 5.93
Sub.| FPB | 4.76 | 4.72 | 5.17 | 539 | 5.60 | 5.60

1 | APB | 475 | 475 | 537 | 5.83 | 6.09 | 6.02
FDI | 637 | 633 | 646 | 6.63 | 692 | 696
AP 3.14 | 308 | 424 | 461 | 564 | 5.63
Sub.| FPB | 486 | 481 | 493 | 513 | 5.3] 5.25

2 | APB | 596 | 564 | 581 | 6.02 | 7.00 | 6.36 Table 4. Optimised values of Fe,_, Leg,, @, S and A
FDI | 5.17 | 524 | 534 | 5.44 | 5.69 | 5.606 Muscle | Foz(N) | Legg(em) | @ 5 2
AP | 343 | 341 | 388 | 465 | 5.07 | 5.06 AP 260281 | 5.366

Sub| FPB | 465 | 455 | 483 | 5.12 | 560 | 5.57 FPB | 207.790 | 4.993

; APB % 980 1363 0.723 | 0.010 | 0.724
APB | 53 | 529 | 543 | 593 | 6.26 | 6.21 DI = i

FDI | 5.07 | 508 | 535 | 5.68 | 646 | 6.01
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1. Hill's muscle model to predict
thumb tip force

Force Measured Versus Force Predictad for O Degree Flesoon

Table 5. RMSE performance of model developed as compared
to model by Park et al.

Flexion angle | Model developed Park et al., 2012
0* 1.784 1.866
15° - 3.299
30” 1.862 3453
45° - 4425
% 60" 1.822 -
% a90” 1.349 -
e

| i - ~ More subjects for more universal
] 05 1 15 2 25 ) model

Tima (ms) x10°

Fig. 11(a). Plot of measured (black) vs. predicted (grey)
thumb-tip force at 0° and 30° with new multiplier.
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2. Thermal imprint to predict
affective states

Explicit and implicit communication plays significant
role in effective interaction

Verbal, facial expression, body language could be
emotionally masked causing deterred interaction

Motivation is to leverage autonomic nervous
system (ANS) parameters to detect true affective
state — used by autonomous agents for effective

Interaction
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2. Thermal imprint to predict
affective states

Objective: To develop non-invasive, contactless,
seamless (subject & sensor) system to identify affective
states of subjects from frontal facial thermal
imprint as biosignal

Figure: Sample of thermal image
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2. Thermal imprint to predict
affective states

Arousal
excited
AROUSED
ALARMED L
g TENSE *f ® ASTONISHED
]
ANGRY® e EXCITED
ANNOYED o
DISTRESSED »
FRUSTRATED *
e DELIGHTED
* HAPPY
unpleasant pleasant  Valence
PLEASED
I L ]
MISERABLE » ® GLAD
SAD o
GLOOMY = @ SEREME
DEPRESSED ® CONTENT
o® AT EASE
2 SATISFIED
BORED ® RELAXED
CALM
DROOPY »
TIRED ® |e SLEEPY

Figure: The Circumplex Model of affect
(Russell, 1980) — three principal
dimension

calm
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2. Thermal imprint to predict
affective states

State Definition

Happiness Feeling of pleasure, satisfaction with
performance

Fear Extreme worries, anxiety and panic

Anger Extreme degree of negative affect toward
someone or something

Disgust Revulsion, disapproval, annoyance or irritation

Sadness Feeling of melancholy beyond negative self-
efficacy

Surprise An unexpected or astonishing event, fact or
thing

Figure: Prototypical emotion (Ekman, 1992) — categorical based classification
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2. Thermal imprint to predict
affective states - methodology

Image Processing

' 30 Hz Imagery

Facial Skin Temperature

Test & Validation

[
Validation :
I
Training Data - : _
s il { i “Model
Testing Data - l
I

Feature Extraction (GLCM)

Figure: Framework for affective state identification
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2. Thermal imprint to predict
affeCt|Ve States — experimental setup and procedure

sual Stlmul []Eplm‘r

Figure: Experimental setup. Procedure and Questionnaire
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2. Thermal imprint to predict
affective states

Feature extracted: Using
statistical Gray Level Co-
occurrence Matrix
(GLCM) :

4-second order statistical
features of the image
(contrast, correlation,
energy

and homogeneity)
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2. Thermal imprint to predict
affective states

Experiment conducted:

30 healthy subjects, 15 males and female

Age: between 21 to. 28 years old

Stimuli: Video clips

The collected data were down-sampled to 80 thermal images (from
1200 images) per subject per emotion

Table 4.5: Contribution of Indi’ Table 4.7: The Accuracy of Two Combined Features
Tnterpixel Distance (d) Interpixel Distaneo (d)
Fighane d=1 ( Feature d=1 (Accuracy) d=2 (Accuracy)
CON 23 R0 CON 83.8% (+) 83.5% (+)
COR 28 8¢ COR 88.8% (+) 89.3% (+)
ENR 79 80 ENR 79.8% (-) 77.3% (-)
HMS 20.6° HMS 80.6% (-) 79.4% (-)
Average 83.25% 82.38%
CON-COR 86.6% 86.5%

Figure: The best result
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2. Thermal imprint to predict
affective states

Table: Confusion Matrix for 6 basic emotions

Predicted Class
Actual Disgust Angry Fear Happy |Sad Surprise
Class [ pisgust | 305687963755 | 1257 | 1171 [2225 [ 1439
Angry 1158 341&2'(88.955% 693 1045 757
Fear 887 582 3463690.py 10 996 589
Happy | 670 574 528 3549792 1614 517
Sad 2123 1722 1310 1059 309&?280.5)1239
Surprise | 1132 877 F i 733 991 33950 (ss.

Performance: Average classification accuracy of 86.7%.
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2. Thermal imprint to predict
affective states - children

Figure: Image from Flir T420

Figure: Experimental setup
Figure: Timeline for stimuli
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2. Thermal imprint to predict
affective states .

P4

Feature extracted:
Average intensity
values

Area of blood vessels
From GLCM :

Contrast

Correlation
Dissimilarity

(S A T A

Figure: ROIs: Supraorbital, periorbital
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2. Thermal imprint to predict
affective states

Experiment conducted: Affective
16 healthy subjects, ROI States j=1 j=2 j=3
Age: between 6 to 9 years old

' o An 0.91 0.86 0.78
Stimuli: Pictures from IAPS — In ary

The collected data were down-s Disgust 09 0385 0.77

images) per subject per emotior SupraOrbital . 0.91 0.85 0.78

Sad is not considered due to lov

Happy 0.91 0.86 0.78

Surprise 0.9 0.85 0.77

Angry 09  0.85 0.77

Disgust 0.89 0.84 0.76

PeriOrbital ... 09 085  0.77

Happy 0.88 0.84 0.76

Surprise 0.9 0.85 0.77

Different threshold values from MOC
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2. Thermal imprint to predict
affective states

(Region of Hottest region Performance of
Interests threshold value accuracy (%)
(ROI) (correctly classified) k-
NN classifiers

Supraorbital At 50% 89.9

At 90% 92.4

At MOC of j=1 92.4

At MOC of j=2 84.8

At MOC of j=3 91.1
Preorbital At 50% 94.9

At 90% 93.7

At MOC of j=1 88.6

At MOC of j=2 93.7

At MOC of j=3 96.2
Combined At 50% 97.5
ROIs At 90% 98.7
(Supraorbital At MOC of j=1 97.5
+ Preorbital) At MOC of j=2 93.7

At MOC of j=3 99.2
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2. Thermal imprint to predict
affective states

Ongoing study on-Small Children with Autistic Spectrum Disorder
(ASD) to solve the problem of social interaction difficulties
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