Rational Design of High-Performance Continuous-Flow Microreactors Based on Gold Nanoclusters and Graphene for Catalysis

By Liu, Y (Liu, Yanbiao, Liu, X [Liu, Xiang], Yang, SN [Yang, Shengnan], Li, F, Shen, CS [Shen, Chenxi], Huang, MH [Huang, Manhong], Li, J, Nasaruddin, RR, Liu, Jia, Xie, JP [Xie, Jianping])

Abstract

In this work, we rationally designed a high-performance microreactor system for continuous-flow catalysis. The membrane consists of ultrasmall gold nanoclusters (AuNCs) and two-dimensional graphene. The Au cores of the NCs act as catalysts, while their ligands have two functions: (1) protecting the Au cores to avoid agglomeration and (2) providing a well-defined surfactant array to disperse graphene in aqueous solution. Hydrogenation of 4-nitrophenol (4-NP) was employed as model reaction to evaluate catalytic activity. The catalytic membrane microreactor demonstrated excellent catalytic activity and stability, where complete 4-NP conversion was readily achieved via a single pass through the membrane. This desirable performance was maintained for 12 h of continuous operation, although a certain amount of organic buildup on the membrane was observed. The catalytic membrane microreactor outperforms conventional batch reactors due to its improved mass transport. 4-NP-spiked real water samples were also completely converted. This study provides new insights for the rational design of membrane reactors for industrial applications.

Keywords

Gold nanoclusters; Reduced graphene oxide; Catalytic membrane microreactor; 4-Nitrophenol

Author Information

Reprint Address: Liu, YB (reprint author)

Donghua Univ, Coll Environm Sci & Engn, Minist Environm Protect, Text Pollut Controlling Engn Ctr, 2399 North Renmin Rd, Shanghai 201620, Peoples R China.

Reprint Address: Xie, JP (reprint author)

Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore.

Shanghai Inst Pollut Control & Ecol Secur, 1239 Siping Rd, Shanghai 200092, Peoples R China.

LIGAND: WATER; HYDROGENATION; CLUSTERS

Cited References

This study provides new insights for the rational design of membrane reactors for industrial applications.